Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/77400
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Mostafa, Sheikh Shanawaz | en_US |
dc.contributor.author | Mendonca, Fabio | en_US |
dc.contributor.author | Ravelo García, Antonio Gabriel | en_US |
dc.contributor.author | Julia-Serda, Gabriel | en_US |
dc.contributor.author | Morgado-Dias, Fernando | en_US |
dc.date.accessioned | 2021-02-01T08:47:35Z | - |
dc.date.available | 2021-02-01T08:47:35Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 2169-3536 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/77400 | - |
dc.description.abstract | Obstructive sleep apnea (OSA) is a common sleep disorder characterized by interrupted breathing during sleep. Because of the cost, complexity, and accessibility issue related to polysomnography, the gold standard test for apnea detection, automation of the diagnostic test based on a simpler method is desired. Several signals can be used for apnea detection, such as air ow and electrocardiogram. However, the reduction of air ow normally leads to a decrease in the blood oxygen saturation level (SpO2). This signal is usually measured by a pulse oximeter, a sensor that is cheap, portable, and easy to assemble. Therefore, the SpO2 was chosen as the reference signal. Feature based classi ers with shallow neural networks have been developed to provide apnea detection using SpO2. However, two main issues arise, the need for feature creation and the selection of the more relevant features. Deep neural networks can solve these issues by employing featureless methods. Among multiple deep classi ers that have been developed, convolution neural networks (CNN) are gaining popularity. However, the selection of the CNN structure and hyperparameters are typically done by experts, where prior knowledge is essential. With these problems in mind, an algorithm for automatic structure selection and hyper parameterization of a one dimension CNN was developed to detect OSA events using only the SpO2 signal. Three different input sizes and databases were tested, and the best model achieved an average accuracy, sensitivity, and speci city of 94%, 92%, and 96%, respectively. | en_US |
dc.language | eng | en_US |
dc.relation | UID/EEA/50009/2019 | en_US |
dc.relation | M1420-01-0145-FEDER-000002 | en_US |
dc.relation.ispartof | IEEE Access | en_US |
dc.source | IEEE Access [ISSN 2169-3536], n. 8, p. 129586-129599 | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Biomedical signal processing | en_US |
dc.subject.other | Genetic algorithms | en_US |
dc.subject.other | Machine intelligence | en_US |
dc.subject.other | Medical expert systems | en_US |
dc.subject.other | Pareto optimization | en_US |
dc.subject.other | Sleep apnea | en_US |
dc.title | Multi-Objective Hyperparameter Optimization of Convolutional Neural Network for Obstructive Sleep Apnea Detection | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/ACCESS.2020.3009149 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,587 | |
dc.description.jcr | 3,367 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.