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ABSTRACT Obstructive sleep apnea (OSA) is a common sleep disorder characterized by interrupted
breathing during sleep. Because of the cost, complexity, and accessibility issue related to polysomnography,
the gold standard test for apnea detection, automation of the diagnostic test based on a simpler method is
desired. Several signals can be used for apnea detection, such as airflow and electrocardiogram. However,
the reduction of airflow normally leads to a decrease in the blood oxygen saturation level (SpO2). This
signal is usually measured by a pulse oximeter, a sensor that is cheap, portable, and easy to assemble.
Therefore, the SpO2 was chosen as the reference signal. Feature based classifiers with shallow neural
networks have been developed to provide apnea detection using SpO2. However, two main issues arise,
the need for feature creation and the selection of the more relevant features. Deep neural networks can solve
these issues by employing featureless methods. Among multiple deep classifiers that have been developed,
convolution neural networks (CNN) are gaining popularity. However, the selection of the CNN structure and
hyperparameters are typically done by experts, where prior knowledge is essential. With these problems in
mind, an algorithm for automatic structure selection and hyper parameterization of a one dimension CNN
was developed to detect OSA events using only the SpO2 signal. Three different input sizes and databases
were tested, and the best model achieved an average accuracy, sensitivity, and specificity of 94%, 92%, and
96%, respectively.

INDEX TERMS Biomedical signal processing, CNN, genetic algorithms, machine intelligence, medical
expert systems, Pareto optimization, sleep apnea, SpO2.

I. INTRODUCTION

Sleep is a circadian rhythm that significantly contributes
to maintaining a pleasant daily routine. However, more
than sixty sleep related disorders have been identified and
obstructive sleep apnea (OSA) is one the more prevalent
in the population [1]. It is characterized by obstruction or
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reduction of the airflow during sleep decreasing the oxygen
level in blood. It was also verified that sleep apnea increases
cognitive impairment [2] and increases the risk of hyperten-
sion [3], coronary artery disease [4], stroke [5] and other
diseases. In population based studies it was estimated that
around 200 million people suffer from this disorder [6], [7]
that is more dominant in adult men (around 4% com-
pared to 2% adult of women) [7]. However, 80% of the
patients can be unaware of that they possess the disorder.
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Polysomnography (PSG) is the gold standard for OSA detec-
tion, using signals from multiple sensors to produce accurate
diagnostics. Nevertheless, it is a tedious and time-consuming
task [8] that requires specialized equipment, with a high
economic cost for maintenance, and professionals to perform
the exam [9], [10]. So, a simple and less costly system with a
lower number of sensors is desirable for analysis.

Full reviews on commercial devices [11], algorithm per-
formance [12], deep learning [13] and classification meth-
ods [14] for OSA detection have been performed. Different
source signals, such as oximetry [15], [16], electrocardiogram
(ECG) [17], [18], respiration [19], [20], and sound [21], have
been previously evaluated. Among the studied sensors, pulse
oximetry which estimates blood oxygen saturation (SpO2),
has shown significant potential for OSA detection in a non-
invasive way that is easy to use and self-assembly. Therefore,
SpO2 was chosen for this work. The problem of building
a reliable system using SpO2 sensor is mainly two-fold,
finding the best features that describe the apnea events and
use these features to detect the apnea accurately. Multiple
researchers have analyzed different time domain [22] and
frequency domain characteristics [23] thus, creating a vast
pool of suitable features. The creation of handcrafted features
that achieve good performance requires significant domain
knowledge. In addition to that, it is becoming significantly
harder to find a new set of features that can achieve a
higher performance since combining two or more features
does not guarantee an improvement [24]. Therefore, a large
number of features needed to be sorted according to rel-
evance to increase the accuracy. Various techniques have
been employed to address this problem such as minimum
Redundancy Maximum Relevance (mMRMR), Sequential For-
ward Search (SFS) [25] and Genetic Algorithms (GA) [26].
However, these techniques are either slow or most of the
time it does not guarantee that the best features were chosen.
In addition to that, the best features are sometimes dependent
upon the classifiers used. Deep learning has the ability to
automatically learn features from raw data [27]; thus by using
deep network these problems can be solved.

Deep convolution neural network (CNN) is one of the most
successful deep networks which are inspired by the vision
system. Traditionally, CNN are designed for two-dimensional
(2D) images as input with different channels [28] however,
it can also be used for one-dimensional (1D) signals with
single-channel [29], [30]. In most of the cases, automated
detection of obstructive sleep apnea events using a CNN
performs better when compared with shallow classifiers [31].
Some authors used nasal airflow [32] or a combination of
SpO2, oronasal airflow, and ribcage and abdomen move-
ments [33] and converted these one dimensional signals to
a two dimensional input to employ the two dimensional
CNN (CNN2D) directly for apnea detection. One dimen-
sional CNN (CNN1D) is a good alternative requiring far less
preprocessing (does not need to convert 1D to 2D) for 1D
signals. ECG [34], [30], [35] and nasal pressure or airflow
[36], [19] signals have been previously used with a CNN1D
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for OSA classification. Haider et al. [37] employed three one
dimensional signals (nasal airflow, abdominal and thoracic
plethysmography) to feed a CNN 1D with three channel inputs
for OSA detection. Following this research line, the SpO2
signal which is 1D in nature was selected to be directly fed to
CNN1D without any dimensional change stage.

However, implementing CNN presents significant changes.
The structure and/or hyperparameters of the network are typi-
cally selected through an experimental search. Such methods
require a significant amount of time as well as experience
and expert knowledge for the creation of handcrafted network
structure and hyperparameters [38]. A possible alternative
is to use evolutionary algorithms, such as GA, to solve
the structural optimization problem. The algorithm starts
with a random individual generation and using mutation and
crossover over a defined number of generations to achieve the
optimized solution by optimizing fitness function. Zhining
and Yunming [39] designed a genetic convolutional neural
network model based on random sample and found it has
a better performance than CNN in MNIST data set. Evolu-
tionary algorithms also achieved significant success in the
configuration of topologies [40] and connection for convo-
lution layers [41]. Regarding the selection of the network
hyperparameters, an asynchronous evolutionary approach
was successfully used on a Titan supercomputer [42]. Also,
neuro-evolution was able to construct large, accurate net-
works from trivial initial conditions while searching a large
space without experimenter participation [40]. By combining
Dynamic Structured Grammatical Evolution (DSGE) with
GA Assuncio et al. [43] was able to achieve better results
without resorting to prior knowledge. Grammatical Evolu-
tion (GE) was also used for handwritten digit recognition [44]
as well as human activity recognition [45]. EvoDeep, a DNN
where GA was used for optimization, was developed by
Martin et al. [46]. This concept of using GA for choosing
the best network was also successfully extended to transfer
learning [47]. For sleep apnea detection, Falco et al. [48]
used Evolutionary Algorithms (EAs) to optimize the hyper-
parameters of a deep network with Heart Rate Variability
(HRV). Therefore, a GA was also employed in this work for
hyperparameter optimization of the CNN.

Unbalanced data is also a common issue in the sleep apnea
detection, having insufficiency of one class (apnea) level and
prevalence of another class (normal) level. Thus, a single
objective technique (which was applied in the previously
mentioned applications) commonly tries to maximize the
accuracy, leading to a biased classifier since an increase of
the accuracy can sacrifice the sensitivity (apnea events detec-
tion) that is related to the less prevalent class. The designed
model addresses this issue by simultaneously considering
the accuracy (Acc), sensitivity (Sen) and specificity (Spc)
in a multi-objective problem. The Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [49] was selected for this
work due to the large success it has in other areas, such as
filter design [50], water distribution system [51]. Therefore,
the primary objectives of this work are:
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-Design an automatic featureless sleep apnea events detec-
tion algorithm using CNN and SpO2 signal;

-Develop an independent algorithm capable of choosing
the CNN structure and hyperparameters without any human
intervention, using the multi-objective optimization;

-Analyze the effects of input sizes, database dependencies
and layer size on the classification.

To achieve the desired objectives, an algorithm was devel-
oped for the automatic creation and hyper parameterization of
CNN using one database with three input sizes (Section II).
The result of the creation and hyper parameterization of
CNN is discussed in Section III. In the end, the conclusion,
limitation and future works are discussed in Section IV.

Il. MATERIALS AND METHODS

The proposed system used CNN with NSGA-II algorithms
to solve the multi-objective problem by choosing a suitable
structure that can achieve the goal of attaining balanced
results. Three different databases were used to create and
test the system. A simplified workflow of the developed
methodology is shown in Fig. 1. For simplicity, the iterative
elements of the workflow are not shown (such as two-fold,
leave-one-out, different inputs etc.).

HuGCDN2008 Resampling 50 Hz
AED Re-annotated
ucb Create three input sizes AED, UCD
CNN Hyperparameters HuGCDN20081
Optimization

Number of layers
Type of each layer

1 minute input

— —

i i «~—— SNo/2 subjects (Tr)
3 minute input

SNo/2 subjects (Te)

5 minute input Each layer parameter

| FCLs neuron number

?
Cross-Database Testing

Optimized CNN (using .
HuGCDN2008) was tested
on AED and UCD

Transfer Learning Testing

Optimized CNN (using

HUGCDN2008) was re- “— SNo-1subjects (Tr)

trained and tested on 1 subject (Te)
AED and UCD

CNN Classifiers

Performance Analysis

Optimization

Cross-database

— Input sizes
Number of layers
Transfer learning
With other works

FIGURE 1. Simplified workflow of the optimization and performance
analysis methods applied for proposed technique. In the figure Tr is
training, Te is testing, FCL is fully connected layer.

First, the databases are re-sampled with a minute based
annotation. Then CNN hyperparameters optimization is car-
ried out with the HuGCDN2008 database with a two fold
technique using half of the subjects (SNo/2) for training and
half of the subjects for testing, where SNo is the total num-
ber of the subjects. After achieving the best CNN for three
inputs, these classifiers were tested with other two (AED and
UCD discussed later) databases using cross-database testing
and transfer-learning testing. Finally, the performance of the
proposed system was analyzed with different performance
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parameters. A brief description of the materials and methods
are discussed in the subsequent subsections.

A. DATABASES

Three databases were tested in this work. Two of them were
collected from Physionet and are freely available, specif-
ically the Physionet apnea ECG database (AED) and the
St. Vincent’s University Hospital / University College Dublin
Sleep Apnea Database (UCD). The third one was collected in
Gran Canaria University Hospital, named Dr. Negrin Univer-
sity Hospital Database.

The dataset from Sleep Unit of Dr. Negrin was collected
in Gran Canaria University Hospital has 70 referred (sus-
pected sleep apnea) patients (51 males and 19 females,
from 18 to 82 years old) which will be referred as
HuGCDN2008 database. The subjects do not have any
arrhythmia and SpO2 signal was sampled at 50 Hz. The
annotations were made in 30 s epochs [23].

AED has 70 recordings but only eight have SpO2 sig-
nals available. These eight recordings were used and their
duration ranges from 7 tol0 hours with minute-by-minute
annotation [52], [53]. The sampling frequency of this data
is S0Hz.

UCD [54] has 25 referred (suspected sleep apnea) subjects
including 21 males and four females. This database is con-
tinuously annotated with hypopnea (HYP) and central (C),
obstructive (O) and mixed (M) apnea. The sampling rate of
the SpO2 signal was 8 Hz. It has a continuous annotation.

B. PREPROCESSING OF THE DATABASES

Due to the non-uniformity between datasets, such as sampling
frequency and annotation methods, a normalization prepro-
cess was performed.

To have all of the databases at the same sample
rate UCD [54] was resampled at 50Hz. In this work,
apnea events were detected with one minute epochs
(as employed by AED [53]). Therefore, the annotations
for HHGCDN2008 were produced by labeling the minute
as apnea minute if any or both of its 30 second windows
were annotated as apnea by the physician. For UCD [54] if
10 seconds or more, in a minute, were annotated as apnea
by the physician, then the one minute epoch was labeled as
apnea.

The input sizes of 1 minute, 3 minute (with 2 overlapping
minutes) and 5 minute (with four overlapping minutes) were
created considering the central minute as the one that defines
the label. Therefore, taking into consideration the selected
sampling frequency the 1 minute (60 seconds), 3 minute
(180 seconds), and 5 minute (300 seconds) windows had
3000, 9000 and 15000 sampling points, respectively.

C. CONVOLUTION NEURAL NETWORK

CNN commonly comprise different types of layers. In this
work, the CNN has an input layer, convolution layers, nonlin-
ear layers, fully connected layers, batch normalization layers,
softmax layer and a class output layer.
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The input layer is the first layer of the network and receives
the raw data. Thus, the size of the input layer is the same
as the input data so three input layers were tested.

Different convolution kernels of the convolution layer,
or filters, slide over the input providing a diversity of fea-
tures which capture different local information [55]. The
learners choose the values of the filters during the training
process [56]. The feature map size depends on the number of
filters (sometimes referred as depth), filter size (for 1D only
width is considered), stride (which is the number of sample
points the filters slides in each step) and padding (adding
zeros at the end of the data input so that filters can be run
on the bordering elements).

If the whole convolution layer is considered, the feature
maps can be seen as a n + 1 dimension map where » is the
dimension of the input [57]. The equation for the feature map
of the convolution layer is given by

Ci =@ kg ®f +bg) (D

where 1 < d < nkg, nkg is the number of convolution
kernels in a layer, C is the feature map of the entire convo-
lution layer (C € R>/*™d) @ is the n(= 1) dimensional
convolution operation, k is the kernel, f is the input matrix,
b is the bias and d is the number of kernels.

In this work, Nonlinear Layer uses the Rectified Linear
Unit (ReLU) for a non-linear operation that introduces the
non-linearity in the network by replacing all negative values
by zero. This non-linearity can improve the classification per-
formance [58] therefore, ReLU was chosen as the nonlinear
function. It is defined as

)

Tox= @)

f(x)zio, x<0

where x is the input of the function.

The Pooling layer uses a subsampling operation for reduc-
ing the dimensionality of the data that passes through the
network. It has the same parameters as a convolution filter
and can perform operations such as average and maximum
(max). Max pooling commonly provided the best results thus
it was used [59], defined as

¥p = max(x) 3)

where x is the input of the maxpooling layer with the same
number of input samples as the pooling size of maxpooling.

Batch normalization layer normalizes its input over a batch
as [60]

Xi — B
Yo =y ————+p 4

v/ aé +e€
where up is the mean and op the variance over the batch size.
€ is a constant which stabilizes the system if the batch size is
too small. This layer is added to increase the training speed
and decrease the network initialization sensitivity.
A fully connected layer infers that every neuron in the
previous layer is connected to every neuron on the next layer
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and helps to learn the nonlinear parameter. In this layer,
a neuron has the same function as a common perceptron with
an activation function defined by [61]

y=g¢ (Z;;lxj X wj) +b 5)

where x is the input, w is the weight, b is the bias, n is the
number of inputs and ¢ is the nonlinear function. This layer
is followed by a SoftMax layer, also known as normalized
exponential function. The softmax function @sefimax allows
to represent a categorical distribution which is a probability
distribution over k different possible outcomes. In this imple-
mentation k = 2 (binary case), thus

e’
@softmax (X) = W (6)
Afterwards, a class out layer generates the output of the
desired class level of the input.

D. OPTIMIZATION OF CNN HYPERPARAMETERS USING
MULTI-OBJECTIVE HYPERPARAMETER OPTIMIZATION
CNN'’s hyperparameters were optimized using a multi objec-
tive genetic algorithm named NSGA-II [49], [62]. The multi
objective technique was used to have an equally better perfor-
mance in all objectives, contrary to what it is present in the
single objective optimization method [50]. A Multi objective
optimization technique optimizes a vector (O) of objective
functions (in this work Acc, Sen and Spc) and the optimiza-
tion consists of finding V (in this case, the hyperparameters)
which maximizes O(v) represented as

OW) =01 (»),0:(v),...0tv) (D
subject to : y(v) = (y1 (), y2(v), ... y() (8)

b<yi<vY ©)

and vy <

where v is the vector of design variables in V parameter space
with N elements with upper bound vf] and lower bound viL,
y(v) is the objective space and O(v) is the vector representa-
tion of the objective functions that has to be maximized [63].

A simplified representation of the implementation strategy
is presented in Fig. 2 where all inputs of layers are repre-
sented as x and outputs as y. For every generation (Gen)
the chromosome of each population (Pop), named P;, was
generated using mutation and crossover with the information
needed to create a CNN. Then, it was translated to the CNN
structure and parameters using the decoding methods indi-
cated in Table 1. After twofold training and testing, the next
generation population (P4 1) was chosen according to Pareto
fronts and crowding distance using Acc, Sen and Spc of two-
fold test.

The implemented technique can be described in 11 steps:

Step 1: A parent population Py with the size of N is
randomly generated.

Step 2: The system converts the chromosome to a CNN
network. A fixed input (3000 neurons for 1 minute, 9000
neurons for 3 minute and 15000 neurons for 5 minute) layer
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FIGURE 2. Simplified representation of the CNN hyperparameters optimization strategy using multi-objective (NSGA-II [49]) hyperparameter

optimization.

and output layer (fully connected layer with 2 outputs, soft-
max layer and class output) are always presented (fixed),
regardless of the structure chosen by the GA algorithm.
The GA algorithm was only allowed to choose the number
of the layers between fixed layers, type of layers, size of
kernels, pooling sizes, stride and number of neurons of a
fully connected layer. A real coded chromosome that ranges
from O to 1 was used in this work. However, different types
of parameters for the CNN had different ranges, so proper
decoding was done according to Table 1. First the generated
chromosomes were scaled between the defined range and
then a ceiling function was used to get natural numbers.
To reduce the number of possible solutions, hence reducing
the simulation time, two different types of layer combinations
were used. First was a convolution layer with a ReLU layer
and batch normalization defining it as ConvX. Second one
was maximum pooling, indicated by MaxP. ConvX layer has
three cascaded functions, doing convolution with the input
and a defined kernel (k) then a batch normalization and finally
a ReL.U, indicated together by fps in the Fig. 1. To prevent
losing too much information in each layer, back to back MaxP
layer was replaced by a ConvX layer and each parameter has
its range defined in Table 1.

Step 3: After generating the CNN structure (hypermeters),
the network was trained using the ADAM algorithm [64]
using two fold methods. HuGCDN2008 database has
70 subjects which were divided into 35 subjects in each
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TABLE 1. Chromosome decoding techniques and ranges for CNN.

Type  Number of Position Quantity Range
1 1 Number of layers 1-10
2 Number of max Type of each layer 1(ConvX)-
flexible layers 2(MaxP)
3 Number of highest Each layer
parameters*Number  parameters
of max layers
3.1 1 Number of filters 1-15
(ConvX)
32 1 Filter size (Width) 3-9(ConvX),
2-5(MaxP)
33 1 Stride 1- filter size
4 1 FC neuron number 20-200

train and test set. Subject independence between the training
and testing sets was ensured by not mixing the subjects
data between the sets. An initial learning rate of 0.001 was
employed during the training and each 10 epochs the learn-
ing rate drop factor was 0.1. The batch size was 256 and
data were shuffled in every epoch. An average of the
Acc, Sen and Spc was calculated to be used as objective
parameters.

Step 4: Using the objective parameters a non-dominant
sorting was performed for sorting the parent population,
where P = Pg [49].
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Step 5: Simulated binary crossover [65] and polynomial
mutation were used to create a new offspring population (Q)
of size N.

Step 6: A combined population of R, was created using
offspring O, and parent population P;. Thus, the size of R;
becomes 2N .

Step 7: Fast non-dominated sort was used to sort the entire
population in the same way as in Step 4.

Step 8: Calculate the crowding distance using the method
defined by Deb et al. [49].

Step 9: Combined population, Q;, was sorted according to
a non-dominant sort and crowding distance. If the population
size (from first F; to last F; front) was greater than N then a
crowded-comparison operator, <, was used in descending
order to populate the population size until N from F; and
others (F;) are discarded. The partial order <, was given
by

i <p Jif Grank < Jjrank) 07 ((rank == jrank)

and (idistance > ] a'istance))

Step 10: Keep the N number of elements from the sorted
list and increased the number of generations.

Step 11: Repeat from Step 5 until the termination condition
(50 generations were produced) was met.

E. PERFORMANCE EVALUATOR

The multi-objective method optimized (Eq. 7 where k = 3)
for Accuracy (Acc), Sensitivity (Sen) and Specificity (Spc) is
defined by

TP + TN
Acc = (10)
TP+ IN + FP + FN
TP
Sen = —— (11)
TP + FP
spe = — 1 (12)
PC = IN L FN

where, TP is the number of apnea minutes classified as apnea
minute, TN is the number of normal minutes classified as
normal minute, FP is the normal minutes classified as apnea
minute, and FN is the number of the normal minute apnea
minutes classified as normal minute.

The optimization of CNN hyperparameters was per-
formed using HuGCDN2008 database. The other two
databases (UCD and AED) were used for cross-database and
transfer-learning performance assessment.

Cross-database: For cross-database testing, the CNN is
trained and developed using one database (HuGCDN2008)
and testing the performance in another database
(UCD and AED).

Transfer-learning: Traditionally, transfer-learning is the
process of applying knowledge gain in one field applying in
anther that is related but in a different problem. In this work,
knowledge gain (optimization of CNN) with one database
(HuGCDN2008) was implemented in other databases
(UCD and AED) with a minimum modification. Practically,
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this is achieved by replacing the FC and output layer with
new FC and output layer and retain the CNN.

In addition to this, this work investigated the relationship
of input sizes, number of layers and performance.

IIl. RESULTS

The algorithm was implemented in MATLAB and ran
in a computer with Intel Core (TM) 17-8700k processor,
64 GB RAM, and two NVIDIA GeForce GTX 1080 Ti GPUs.
Two folds were run in parallel in the two GPUs and the
average of the obtained results of the objective functions
were computed. The optimizations were carried out with
three different input sizes, 1 minute with 3000 samples,
3 minute with 9000 samples and 5 minute with
15000 samples, respectively. The termination condition was
50 generations with a population size of 50, which leads to
(50(Gen) * 50(Pop = offspring population = N)) 2500 dif-
ferent networks and 5000 networks to train for each input size
(because a two-fold method was employed). It took, respec-
tively 587.83926 hours (= 24.49 days), 832.04399 hours
(& 34.67 days) and 911.226716 hours (= 37.97 days)
for 1 minute, 3 minute and 5 minute input to finish the
optimization.

A. HYPERPARAMETER OPTIMIZATION

In the first step, the algorithm generates a random population
to ensures the diversity of the population and rank them
according to the multi objective optimization (Acc, Sen and
Spc) [50]. From Fig. 3 it can be seen that for the three simula-
tions (1 minute, 3 minute and 5 minute input) started (1st Gen)
with some random solutions all over the problem space. Over
each generation, using mutation and crossover, the algorithm
was able to reach better solutions as can be verified in Fig. 4,
Fig. 5 and Fig. 6. Almost all the solutions of 50" generation
were better than the 1%t Gen. From the 50 Gen solutions,
among three different inputs, it is noticeable that 3 minute
and 5 minute inputs have better results compared to 1 minute
solutions but in a similar range.

The multi objective algorithm, NSGA-II, ranked the out-
putted solution according to Pareto front numbers. All
the solutions on first Pareto front are valid solutions as
NSGA 1II do not generate a single solution but a set of Pareto
non-dominated solutions. One way of assessing the classifiers
performance is the receiver Operating Characteristic (ROC)
curve (Sen vs 1- Spc). Since the algorithm is using a three
dimensional problem space (Fig. 3) a modified version of the
ROC curve (with 2 dimension), where all of the first Pareto
front solutions are showed in Fig. 7, can allow to compare
the solutions. For all three different inputs, CNN’s first Pareto
front of 50th Gen has better and more solutions then 1st Gen’s
first Pareto front, as can be seen in Fig. 7 (a), (b), (c). For
the 50th Gen it was assessed that 5 minute input has the best
solution followed by 3 minute and 1 minute CNN (Fig. 8).

Although the algorithm was trying to solve a multi-
objective optimization, NSGA-II treated equally the opti-
mization variables (Acc, Sen, and Spc) due to a restriction
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FIGURE 3. The multi objective problem space in percentage for 1st and
50th generation for a) 1 minute b) 3 minute c) 5 minute inputs.

with space problems and constraints such as overlap of apnea
and normal events (where the Sen and Spc are dependent and
Acc is dependent on Sen and Spc) the solutions do not have
equal Sen, Spc, and Acc. Therefore, the final solution was
chosen with the highest Acc among all the valid solutions
which will also help to compare with other methods presented
in the literature. By using Acc as a strategy of choosing one
solution over others, three solutions for 1 minute, 3 minute
and 5 minute inputs were selected with Acc of 88.2%,
89.24%, and 89.32%; Sen of 72.55%, 74.05%, and 74.75%;
and Spc of 94.21%, 94.60%, and 94.44% respectively for
two-fold methods. These solutions are marked with a black
dot and the values are indicated in a box in Fig 3, Fig 4,
Fig 5, Fig 6, Fig. 7 and Fig. 8. The detailed results of
two-fold method are shown in Table 2 and the average is
shown in Table 5. The numbers of flexible layers (NoFL)
was 5, 5 and 7 (Fig. 9 Section III C) resulting into 19, 19 and
21 layers for 1 minute, 3 minute and 5 minute CNN networks,
respectively (TABLE 3). The layer sequence in 1 minute
and 3 minute CNN is also similar where first Conv layer
(L2) and Batchnorm (LL3) are the same for both. However,
the remaining layers have more kernels or channels. Five
minute CNN has two more flexible layers and actual layers
are in form of Maximum pooling (L9, L13). It has the same
number of conv, ReLU and Batchnorm layers as 1 minute
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and 3 minute CNN, except that the number of kernels and
channels in the first layer is higher.

B. CROSS-DATABASE PERFORMANCE

In order to check the universality of the system, the trained (in
HuGCDN2008 database) CNNs were tested in AED [53] and
UCD[54] databases. The results are presented in Table 2. The
performance of all three networks with UCD [54] database
was lower than the originally trained database but were
higher in the AED [53]. The highest accuracy, 92.65%, was
achieved with 1 minute input in AED [53] database. For
HuGCDN2008 and UCD [54] database, the main difficulty
was in the detection of short apnea events. This could be
related to the fact that some respiratory pauses do not produce
a clear pattern in the oximetry signal. This could be related to
the hemoglobin dissociation curve, where short events would
not be able to decrease the SpO2 percentage because a marked
reduction in the partial oxygen pressure did not occur. In addi-
tion to that, pH, temperature and 2,3-diphosphoglycerate
(2,3-DPG) levels, which are specific to each person, can
displace the hemoglobin dissociation curve [23].

TABLE 2. The Result both CNN trained using HuGCDN2008 database in
Two-Fold (_F1 and _F2 for fold one and fold two. Different input sizes are
indicated as _1, _3 and _5 for 1 minute, 3 minute, and 5 minute,
respectively).

Test

Symbol Database Sen Spc Acc
CNNI1DF1 1 HuGCDN2008 71.50  95.30 88.50
CNNI1DF2 1 HuGCDN2008 73.60  93.10 88.60
CNNIDFI1 3 HuGCDN2008 73.70  95.10 88.90
CNNI1DF2 3 HuGCDN2008 7440  94.10 89.50
CNNI1DF1 5 HuGCDN2008 75.10  94.90 89.20
CNNIDF2 5 HuGCDN2008 7440  93.90 89.40
CNNI1DFI1 _1 AED [53] 91.64  93.36 92.65
CNNI1DF2 1 AED [53] 87.89  92.54 90.63
CNNIDFI1 3 AED [53] 83.77  93.62 89.58
CNNI1DF2 3 AED [53] 85.64  93.36 90.20
CNNI1DF1_5 AED [53] 79.03  93.62 87.64
CNNIDF2 5 AED [53] 88.58  93.67 91.58
CNNI1DF1_1 UCD[54] 56.72  93.32 84.55
CNNI1DF2_1 UCD[54] 64.12  90.69 84.33
CNNIDFI1 3 UCD[54] 67.35  90.51 84.96
CNNI1DF2 3 UCD[54] 82.51  76.30 77.79
CNNI1DF1_5 UCD[54] 66.57  90.19 84.53
CNNIDF2 5 UCD[54] 8537  60.94 66.79

C. EFFECT OF INPUT SIZE

With increasing the input size, the performance of
HuGCDN2008 dataset was improved slightly in Acc, from
88.52% to 89.28% and 89.32%. However, between 3 minute
and 5 minute, the results were almost the same. The Sen
(apnea events) was affected by the input size with an improve-
ment of more than 2% when comparing with the 1 minute
and 5 minute input size. The Spc (normal events) remains
almost the same. By increasing the Sen and keeping the
Spc stable, the classifiers were able to increase the Acc.
A possible reason to justify why longer inputs achieve better
Sen could be related to the fact that an apnea event could be
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FIGURE 6. The changes of the multi objectives in percentage, a) Acc b) Sen c) Spc, over the generations (Gen) of the populations (Pop) for 5 minute input.

present into different minutes, thus, having the information
of longer apnea events increases the detections capabilities.
Another reason could be in some work [23] higher (five)
minutes spectral features show more relevance. However,
in other datasets (AED [53] and UCD [54]) this trend was not
consistent. For the AED [53] dataset the highest Acc, 92.65%,
and Sen, 91.64%, were achieved by the 1 minute input and for
UCD [54] the best results, Acc of 84.96% and Sen of 67.35%,
were achieved by the 3 minute input. Sometimes one network
of higher input size performs worse than the lower input size.
Therefore, the performance parameters are more dependent
on the data and train weight than the input size.

VOLUME 8, 2020

D. EFFECT OF LAYERS

Due to the success of big (deeper) networks, one can assume
that more layers give better results in case of deep learn-
ing. But this assumption is not always true. The number
of chosen layers for each solution can be seen in Fig. 9.
Analyzing the figures, it is possible to assess that the
algorithm was trying different layer sizes to solve the
problem and a better solution did not have the highest
number of layers (NoFL). A Similar conclusion was pre-
sented by Urtnasan et al. [30], [34] that have the occur-
rence of optimum six layered CNN while testing from 3 to
9 layers.
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TABLE 3. Chosen CNN's layers and hyperparameters.

1 minute (60 seconds)

3 minute (180 seconds)

5 minute (300 seconds)

No. Layer Layer Parameters  Layer Layer Parameters  Layer Layer Parameters
L1 Input 1x3000x1 Input 1x9000x 1 Input 1x15000x1

L2 Conv_1 15@1x9x1_1x5 Conv_1 15@1x9x1_1x5  Conv 6@1x7x1_1x3
L3 Batchnorm_1 15 channels Batchnorm_1 15 channels Batchnorm_ 1 6 channels

L4 ReLU | ReLU_1 ReLU 1

L5 MaxP_1 1x5_1x5 MaxP_1 1x5_1x5 MaxP_1 1x3_1x3

L6 Conv_2 8@1x8x15_1x3 Conv_2 12@1x8x15_1x3  Conv_2 14@1x9x6_1x9
L7 Batchnorm_2 8 channels Batchnorm_2 12 channels Batchnorm_2 14 channels

L8 ReLU 2 ReLU 2 ReLU2

L9 Conv_3 8@1x8x12_1x3 Conv_3 I@1x8x12_1x3 MaxP_2 1x3_1x2

L10 Batchnorm_3 8 channels Batchnorm_ 3 9 channels Conv_3 12@1x7x14_1x1
L11 ReLU3 ReLU3 Batchnorm_3 12 channels

L12 Conv_4 13@1x4x8_1x2 Conv_4 14@1x4x9_1x2 ReLU_3

L13 Batchnorm_4 13 channels Batchnorm_4 14 channels MaxP 3 1x3 1x2

L14 ReLU 4 ReLU4 Conv_4 15@1x5x12_1x3
L15 FC1 117 FCL FC1 124 FCL Batchnorm_4 15 channels

L16 ReLU 5 ReLU_5 ReLU 4

L17 FC2 2FC2 FC2 2 FC2 FC1 99 FCL

L18 Softmax Softmax ReLU 5

L19 Classoutput Classoutput FC2 2 FC2

L20 Softmax

L21 Classoutput

Layer parameters such as the input size, size of the filter, number of the filters represented as a form of [number of filter]@ [vertical width of filter]x
[horizontal width of filter]x [number of Channels of filter] [vertical width of stride]x[horizontal width of stride]

E. TRANSFER LEARNING PERFORMANCE

Transfer learning could be useful apply the information
learned from one problem on others. This work mainly
focused on OSA detection, so transfer learning performance
was analyzed with AED [53] and UCD [54] where the main
network was trained using HuGCDN2008 database. The last
three layers (L 17-19 for 1 minute and 3 minute, L 19-21 for
5 minute, indicated in Table 3) were removed and replaced
with a similar types of layers. Afterwards, it was retrained
with leave one out methods (due to their low number of
subjects). There were two different weighted networks for
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each CNN input network (generated using two-fold methods
implemented in HuGCDN2008 dataset). Because the actual
train data for these transfer learning networks were coming
from different dataset there is no need for averaging the two
networks results (like two fold methods in HuGCDN2008).
Table 4 presents the results from two networks and best
results are summarized in Table 5. It was verified that in all of
the cases the transfer learned networks have a better accuracy.
However, there were database dependencies. In some of the
cases, it was not the same original network trained with
HuGCDN2008 (e.g. CNN1DF2_1 second fold network for
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1 minute in Table 2 ) who performed the best in other two
datasets (e.g. CNN1DF1_1 and CNN1DF1_1 in Table 4 ).

F. COMPARISON WITH STATE OF THE ART WORK

The closest match for the comparison with this work was
developed by Ravelo-Garcia et al. [23] where the same
database, HuGCDN2008, was used. A shallow classifier,

il

NoFL(Z)
NoFL(Z)

Il

Pop(Y)

10
Pop(Y) " Gen
a) 1 minute

b) 3 minute

TABLE 4. Transfer learning (_F1 and _F2 for fold one and fold two
classifiers from HuGCDN2008 database. Different input sizes are
indicated as _1, _3, and _5 for 1 minute, 3 minute and 5 minute,
respectively).

Symbol Database Sen Spc Acc
CNNI1DF1 1 AED [53]  92.04 95.78 94.24
CNNIDF2 1 AED [53] 89.25 94.65 92.42
CNNIDFI1 3 AED [53]  92.79 94.56 93.83
CNNI1DF2 3 AED [53]  89.87 96.78 93.93
CNNIDFI1 5 AED [53] 91.49 95.52 93.86
CNNIDF2 5 AED[53] 87.76 96.61 92.96
CNNI1DF1 1 UCD[54] 54.39 94.14 84.52
CNNIDF2 1 UCD[54]  58.32 93.32 84.85
CNNIDFI1 3 UCD[54]  60.02 93.93 85.73
CNNI1DF2 3 UCD[54]  60.38 93.90 85.79
CNNIDFI1 5 UCD[54]  60.42 93.43 85.44
CNNIDF2 5 UCD[54]  60.34 93.54 85.51

linear discriminant analysis (LDA), was employed with
SpO2 signal and combination of SpO2 and HRV. The pro-
posed work achieved 89.32% Acc using 5 minute window
with only SpO2 compared to 86.5% and 86.9% with mixed
of 1 minute and 5 minute window using SpO2, and SpO2 and
HRV signals. The proposed implementation was also able
to keep the same performance level with 3 minute window
and not sacrificing parameters. Even the one-minute win-
dow has better ACC and Sen compared to the other works
in Table 5.

For the AED [53] dataset the proposed optimized CNN
achieved 92.65% Acc, 93.36% Spc and 91.64% Sen. Though
the Acc was not the best among other implementations it has
one of the best Sen only surpassed by long short-term mem-
ory (LSTM) [66] and deep auto encoder network (DAE) [26].
However, neither of these works, [26], [66], were subject
independent. For UCD [54] the transfer learning approach has
achieved the highest accuracy compared to the other works
except the DAE [26] that was also not subject independent.
In both databases, transfer learning increases the performance
parameters.

If the comparison only includes deep learning, the
proposed networks achieved the best accuracy among all

Number of Fixable Layer

10 10
Gen(X) Pop(Y) Gen(X)
c) 5 minute

FIGURE 9. The changes of the numbers of flexible layers (NoFL) over the generations (Gen) of the populations (Pop) for inputs.
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TABLE 5. Comparison with literature.

Ref. Signal Classifier Database l;fif;rt?;?f: ;gzz(t)rslziz:; Ifiztﬁfes Sen Spc Acc
[7] SpO2 SVM Own 40 150 7 - - 90
[69]  SpO2+ECG Bagging.RepTree ~ UCD [54] 25 60 39 79.75 85.89  84.80
[69] SpO2 Bagging.RepTree UCD [54] 25 60 39 78.23 84.25  82.79
[70]  SpO2 ANN AED [53] 8 60 3 87.5 100 90.3
[23]  Spo2 LDA HuGCDN2008 70 60,300 19 75.6 91.00 86.5
[23]  Spo2+HRV LDA HuGCDN2008 70 60,300 33 73.4 92.3 86.9
[25]  SpO2 SVM-L AED [53] 8 60 50 83.76 97.03  96.89
[25]  SpO2 SVM-L AED [53] 8 60 20 84.57 9728 9738
[25]  SpO2 ANN UCD [54] 25 60 2 43.31 95.03  81.95
[25]  SpO2 LD UCD [54] 25 60 9 61.78 91.03  83.27
[26]  SpO2 ANN AED [53] 8 60 7 96.5 98.5 97.1
[71]  SpO2 DAE AED [53] 8 60 - 78.75 9589  97.64
[71]  SpO2 DAE UCD [54] 25 60 - 60.36 91.71  85.26
[66]  SpO2+IHR LSTM AED [53] 8 60 84.7 - 92.1
[66]  SpO2 LST™M AED [53] 8 60 - 92.9 - 95.5
[33]  SpO2+oronasal CNN2D UCD[54] 23 1 - 79.6
airflow-tribcage and
abdomen movements.
[67]  SpO2+airflow+ RCNN MGH 10000 1 - 88.2
respiration.
[67]  SpO2-+airflow+ RCNN SHHS 5804 1 - 80.2
respiration.
P SpO2 CNNI1D HuGCDN2008 70 60 - 72.55 9421  88.52
P SpO2 CNNI1D HuGCDN2008 70 180 - 74.05 94.60  89.24
P Sp0O2 CNNI1D HuGCDN2008 70 300 - 74.75 94.44  89.32
pe SpO2 CNNI1D AED [53] 8 60 - 91.64 9336  92.65
P SpO2 CNNI1D AED [53] 8 180 - 85.64 9336 90.20
p? SpO2 CNNI1D AED [53] 8 300 - 88.58 93.67 91.58
p? Sp0O2 CNNI1D UCD[54] 25 60 - 56.72 9332 8455
p? SpO2 CNNI1D UCD[54] 25 180 - 67.35 90.51  84.96
p? SpO2 CNNI1D UCD[54] 25 300 - 66.57 90.19  84.53
TL*  SpO2 CNNI1D AED [53] 8 60 - 92.04 95.78  94.24
TL*  SpO2 CNNI1D AED [53] 8 180 - 89.87 96.78  93.93
TL*  SpO2 CNNI1D AED [53] 8 300 - 87.76 96.61  92.96
TL*  SpO2 CNNI1D UCD[54] 25 60 - 58.32 9332 84.85
TL*  SpO2 CNNI1D UCD[54] 25 180 - 60.38 93.90 85.79
TL*  SpO2 CNNI1D UCD[54] 25 300 - 60.34 93.54  85.51

P is for proposed networks optimized by GA and trained using HuGCDN2008 database. TL indicates transfer learning where the proposed networks was

retrained using respective database.

“Between two networks best one is showed. For details please see Table II and Table IV.

subject independent implementation. Even compared to some
implementation where more signals were employed, such
as a combination of SpO2, airflow and respiration [67] or
the combination of SpO2, oronasal airflow and movements
(ribcage and abdomen) [33].

IV. CONCLUSION, LIMITATIONS AND FUTURE WORK

The goal of the work was to develop and test a novel fully
automated hyperparameters optimization algorithm for CNN
and significant results were attained.

Three different window sizes were also tested and is was
verified that there is almost no difference between 3 minute
and 5 minute window sizes. In some cases, the 1 minute
outperformed the 3 minute and 5 minute inputs. Compared to
shallow networks, the developed CNNs were able to achieve
a better performance parameter with smaller input size and
without the need for feature extraction.

It was also verified that the performance of the almost a
similar structure networks was more sensitive to train and
data than the hyperparameters choice. Also, it was verified
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that transfer leaning has a strong potential for implementation
in similar domains.

One of the limitations of the work is the fact that multi
objective optimization was only applied to hyperparameter
optimization and not used for the training. So, when the
transfer learning concept was implemented, the network was
sacrificing Sen to achieve a better Acc. The second limitation
is the population number, only 50 which cannot ensure that
the network had a strong diversity to start with. However, this
issue was mitigated by the use of mutation. This work was
not designed to be optimized for the layer size. So, even the
50t generation has a substantially different sized networks.
One way of solving this issue would be running for more
generations until stable solutions was found. Another way
of doing it could be involving the number of layers as one
of the objectives which are under consideration for future
research. It was verified in the literature, that increasing the
number of signals [37] or selecting a recurrent neural network
(RNN) [68] could possibly improve the results [34], [30]. So,
this could be investigated in the future increasing the number
of signals.
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