Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/77219
DC FieldValueLanguage
dc.contributor.authorGómez Déniz, Emilioen_US
dc.contributor.authorCalderín Ojeda,Enriqueen_US
dc.date.accessioned2021-01-18T08:55:15Z-
dc.date.available2021-01-18T08:55:15Z-
dc.date.issued2020en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/77219-
dc.description.abstractIn this paper, a flexible count regression model based on a bivariate compound Poisson distribution is introduced in order to distinguish between different types of claims according to the claim size. Furthermore, it allows us to analyse the factors that affect the number of claims above and below a given claim size threshold in an automobile insurance portfolio. Relevant properties of this model are given. Next, a mixed regression model is derived to compute credibility bonus-malus premiums based on the individual claim size and other risk factors such as gender, type of vehicle, driving area, or age of the vehicle. Results are illustrated by using a well-known automobile insurance portfolio dataset.en_US
dc.languageengen_US
dc.relationAportaciones A la Toma de Decisiones Bayesianas Óptimas: Aplicaciones Al Coste-Efectividad Con Datos Clínicos y Al Análisis de Riestos Con Datos Acturiales.en_US
dc.relation.ispartofRisksen_US
dc.sourceRisks[EISSN 2227-9091],v. 8 (1), p. 1-19, (Marzo 2020)en_US
dc.subject530202 Modelos econométricosen_US
dc.subject.otherAggregate Claimsen_US
dc.subject.otherAuto Insuranceen_US
dc.subject.otherBayesianen_US
dc.subject.otherBonus-Malusen_US
dc.subject.otherCompound Distributionen_US
dc.titleA survey of the individual claim size and other risk factors using credibility bonus-malus premiumsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/risks8010020en_US
dc.identifier.scopus85099032568-
dc.contributor.authorscopusid15724912000-
dc.contributor.authorscopusid23479414700-
dc.identifier.eissn2227-9091-
dc.description.lastpage19en_US
dc.identifier.issue1-
dc.description.firstpage1en_US
dc.relation.volume8en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateMarzo 2020en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,403
dc.description.sjrqQ2
dc.description.esciESCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
crisitem.author.fullNameCalderín Ojeda,Enrique-
crisitem.project.principalinvestigatorVázquez Polo, Francisco José-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (1,97 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.