Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/77218
Título: | Identifying business misreporting in VAT using network analysis | Autores/as: | González Martel, Cristian Hernández Guerra, Juan María Manrique De Lara Peñate, Casiano |
Clasificación UNESCO: | 5301 Política fiscal y hacienda pública nacionales | Palabras clave: | Fraud Detection Networks Random Forest Vat Declaration |
Fecha de publicación: | 2021 | Proyectos: | CN45/08240/57/100 | Publicación seriada: | Decision Support Systems | Resumen: | Efficient detection of incorrectly filed tax returns is one of the main tasks of tax agencies. Value added tax (VAT) legislation requires buyers and sellers to communicate any exchanges that exceed a certain amount. Both statements should coincide, but sometimes the seller/buyer and its counterpart declare different amounts. This paper presents a method to detect those businesses that are more prone to misreport in their VAT declaration. Using the information of such declarations for a region in Spain during year 2002, we generated a transaction network formed by the tax declarations of buyers and sellers. Four types of error were assigned to each business in the network, defined from the mismatch between the amount declared by the firm in question and its counterpart. We applied a random forest algorithm to detect which firm-related and which network-related characteristics influence each error type. The results show the importance of relational factors among businesses in determining the probability of presenting VAT declaration errors. This information can be used to promote more efficient inspections. | URI: | http://hdl.handle.net/10553/77218 | ISSN: | 0167-9236 | DOI: | 10.1016/j.dss.2020.113464 | Fuente: | Decision Support Systems[ISSN 0167-9236],v. 141, (Febrero 2021) |
Colección: | Artículos |
Citas SCOPUSTM
7
actualizado el 10-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 10-nov-2024
Visitas
158
actualizado el 16-dic-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.