Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/76894
Campo DC Valoridioma
dc.contributor.authorAriza-Ruiz, Daviden_US
dc.contributor.authorGarcía-Falset, Jesúsen_US
dc.contributor.authorSadarangani, Kishinen_US
dc.date.accessioned2020-12-21T15:28:27Z-
dc.date.available2020-12-21T15:28:27Z-
dc.date.issued2015en_US
dc.identifier.issn2297-4687en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/76894-
dc.description.abstractIn this article we first discuss the existence and uniqueness of a solution for the coincidence problem: Find p ∈ X such that Tp = Sp, where X is a nonempty set, Y is a complete metric space, and T, S:X → Y are two mappings satisfying a Wardowski type condition of contractivity. Later on, we will state the convergence of the Picard-Juncgk iteration process to the above coincidence problem as well as a rate of convergence for this iteration scheme. Finally, we shall apply our results to study the existence and uniqueness of a solution as well as the convergence of the Picard-Juncgk iteration process toward the solution of a second order differential equation.en_US
dc.languageengen_US
dc.relation.ispartofFrontiers in applied mathematics and statisticsen_US
dc.sourceFrontiers in applied mathematics and statistics [EISSN 2297-4687], v. 1, (Agosto 2015)en_US
dc.subject120299 Otras (especificar)en_US
dc.subject.other47J25en_US
dc.subject.other54H25en_US
dc.subject.otherCoincidence pointsen_US
dc.subject.otherCommon fixed pointsen_US
dc.subject.otherIterative methodsen_US
dc.subject.otherRate of convergenceen_US
dc.subject.otherTeoría del punto fijoen_US
dc.titleWardowski conditions to the coincidence problemen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fams.2015.00009en_US
dc.identifier.scopus85097311076-
dc.contributor.authorscopusid36622729100-
dc.contributor.authorscopusid6603360338-
dc.contributor.authorscopusid6603285515-
dc.identifier.eissn2297-4687-
dc.relation.volume1en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2015en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Colección:Artículos
miniatura
Adobe PDF (341,53 kB)
Vista resumida

Citas SCOPUSTM   

1
actualizado el 24-nov-2024

Visitas

94
actualizado el 24-ene-2024

Descargas

52
actualizado el 24-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.