Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/76894
Campo DC Valoridioma
dc.contributor.authorAriza-Ruiz, Daviden_US
dc.contributor.authorGarcía-Falset, Jesúsen_US
dc.contributor.authorSadarangani, Kishinen_US
dc.date.accessioned2020-12-21T15:28:27Z-
dc.date.available2020-12-21T15:28:27Z-
dc.date.issued2015en_US
dc.identifier.issn2297-4687en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/76894-
dc.description.abstractIn this article we first discuss the existence and uniqueness of a solution for the coincidence problem: Find p ∈ X such that Tp = Sp, where X is a nonempty set, Y is a complete metric space, and T, S:X → Y are two mappings satisfying a Wardowski type condition of contractivity. Later on, we will state the convergence of the Picard-Juncgk iteration process to the above coincidence problem as well as a rate of convergence for this iteration scheme. Finally, we shall apply our results to study the existence and uniqueness of a solution as well as the convergence of the Picard-Juncgk iteration process toward the solution of a second order differential equation.en_US
dc.languageengen_US
dc.relation.ispartofFrontiers in applied mathematics and statisticsen_US
dc.sourceFrontiers in applied mathematics and statistics [EISSN 2297-4687], v. 1, (Agosto 2015)en_US
dc.subject120299 Otras (especificar)en_US
dc.subject.other47J25en_US
dc.subject.other54H25en_US
dc.subject.otherCoincidence pointsen_US
dc.subject.otherCommon fixed pointsen_US
dc.subject.otherIterative methodsen_US
dc.subject.otherRate of convergenceen_US
dc.subject.otherTeoría del punto fijoen_US
dc.titleWardowski conditions to the coincidence problemen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fams.2015.00009en_US
dc.identifier.scopus85097311076-
dc.contributor.authorscopusid36622729100-
dc.contributor.authorscopusid6603360338-
dc.contributor.authorscopusid6603285515-
dc.identifier.eissn2297-4687-
dc.relation.volume1en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2015en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Colección:Artículos
miniatura
Adobe PDF (341,53 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.