Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/76894
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Ariza-Ruiz, David | en_US |
dc.contributor.author | García-Falset, Jesús | en_US |
dc.contributor.author | Sadarangani, Kishin | en_US |
dc.date.accessioned | 2020-12-21T15:28:27Z | - |
dc.date.available | 2020-12-21T15:28:27Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.issn | 2297-4687 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/76894 | - |
dc.description.abstract | In this article we first discuss the existence and uniqueness of a solution for the coincidence problem: Find p ∈ X such that Tp = Sp, where X is a nonempty set, Y is a complete metric space, and T, S:X → Y are two mappings satisfying a Wardowski type condition of contractivity. Later on, we will state the convergence of the Picard-Juncgk iteration process to the above coincidence problem as well as a rate of convergence for this iteration scheme. Finally, we shall apply our results to study the existence and uniqueness of a solution as well as the convergence of the Picard-Juncgk iteration process toward the solution of a second order differential equation. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Frontiers in applied mathematics and statistics | en_US |
dc.source | Frontiers in applied mathematics and statistics [EISSN 2297-4687], v. 1, (Agosto 2015) | en_US |
dc.subject | 120299 Otras (especificar) | en_US |
dc.subject.other | 47J25 | en_US |
dc.subject.other | 54H25 | en_US |
dc.subject.other | Coincidence points | en_US |
dc.subject.other | Common fixed points | en_US |
dc.subject.other | Iterative methods | en_US |
dc.subject.other | Rate of convergence | en_US |
dc.subject.other | Teoría del punto fijo | en_US |
dc.title | Wardowski conditions to the coincidence problem | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3389/fams.2015.00009 | en_US |
dc.identifier.scopus | 85097311076 | - |
dc.contributor.authorscopusid | 36622729100 | - |
dc.contributor.authorscopusid | 6603360338 | - |
dc.contributor.authorscopusid | 6603285515 | - |
dc.identifier.eissn | 2297-4687 | - |
dc.relation.volume | 1 | en_US |
dc.investigacion | Ciencias | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 7 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Agosto 2015 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR Análisis funcional y ecuaciones integrales | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.orcid | 0000-0002-7090-0114 | - |
crisitem.author.parentorg | Departamento de Matemáticas | - |
crisitem.author.fullName | Sadarangani Sadarangani, Kishin Bhagwands | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.