Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/76663
Título: | Thin plates by the boundary element method by means of two Poisson equations | Autores/as: | París, F. de León, S. |
Clasificación UNESCO: | 33 Ciencias tecnológicas | Palabras clave: | Thin Plates Boundary Element Method Poisson Equation Potential Theory Dual Reciprocity Method |
Fecha de publicación: | 1996 | Publicación seriada: | Engineering Analysis with Boundary Elements | Resumen: | The problem of thin plates according to Kirchhoff's theory is formulated by means of two coupled Poisson equations, which are expressed in integral form using the second theorem of Green in the classical way. The domain integrals are evaluated approximating the integrands by a series of simple domain functions whose coefficients are calculated by a collocation procedure at points placed along the boundary and domain, which originates a certain extra number of unknowns. The approximated domain integrals are then expressed by equivalent boundary integrals, the extra unknowns requiring the use of integral equations associated to the internal points used to approximate the domain integrals. This formulation avoids the problems associated with the singular character of the fundamental solution of the biharmonic equation. | URI: | http://hdl.handle.net/10553/76663 | ISSN: | 0955-7997 | DOI: | 10.1016/0955-7997(96)00007-0 | Fuente: | Engineering Analysis with Boundary Elements [ISSN 0955-7997], v. 17 (2), p. 111-122, (Marzo 1996) |
Colección: | Artículos |
Citas SCOPUSTM
18
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
14
actualizado el 15-dic-2024
Visitas
44
actualizado el 16-sep-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.