Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/76588
DC FieldValueLanguage
dc.contributor.authorMoreno Díaz, Robertoen_US
dc.contributor.authorLeibovic, Knicholasen_US
dc.date.accessioned2020-12-12T09:00:00Z-
dc.date.available2020-12-12T09:00:00Z-
dc.date.issued1995en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/76588-
dc.description.abstractSuccess in exploring neural circuitry and its functions depends critically on the availability of data. This determines what kinds of questions can be asked and what analytical tools can most appropriately be used. Biophysical studies have relied heavily on statistics -e.g. as applied to neuronal spike trains- and differential equations and matrix algebra-e.g. as applied to the Hodgkin/Huxley axon and in modeling some networks. Some other approaches have been relatively neglected. These include the search for optimality criteria in relating structure and function and the decomposition of informational processes into simple units.In this paper we describe how a particular optimaliy criterion has led to new insights and to the classifications of one type of neural cell; and are describe a new family of filters with interesting properties, which serve as simple information processing units and which can be concatenated to provide both high level and low level descriptions. Both methods were developed in connection with visual processing in the retina. But they can be extended with appropriate reformulations to other areas of the nervous system.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceLecture Notes in Computer Science [ISSN 0302-9743], v. 930, p. 209-214, (1995)en_US
dc.subject120304 Inteligencia artificialen_US
dc.titleOn some methods in neuromathematics (or the development of mathematical methods for the description of structure and function in neurons)en_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConference proceedingsen_US
dc.relation.conferenceInternational Workshop on Artificial Neural Networksen_US
dc.identifier.doi10.1007/3-540-59497-3_177en_US
dc.identifier.scopus84890960327-
dc.identifier.isiA1995BF02K00029-
dc.contributor.authorscopusid24543463600-
dc.contributor.authorscopusid7003930587-
dc.description.lastpage214en_US
dc.description.firstpage209en_US
dc.relation.volume930en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid1339968-
dc.contributor.daisngid773652-
dc.description.notasFrom Natural to Artificial Neural Computation. IWANN 1995 / Mira J., Sandoval F. (eds)en_US
dc.description.numberofpages6en_US
dc.identifier.eisbn978-3-540-49288-7-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:MorenoDiaz, R-
dc.contributor.wosstandardWOS:Leibovic, KN-
dc.date.coverdateEnero 1995en_US
dc.identifier.conferenceidevents121217-
dc.identifier.ulpgcen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.orcid0000-0002-5314-6033-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameMoreno Díaz, Roberto-
crisitem.event.eventsstartdate07-06-1995-
crisitem.event.eventsenddate09-06-1995-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

1
checked on Feb 25, 2024

Page view(s)

149
checked on Aug 17, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.