Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/76420
DC FieldValueLanguage
dc.contributor.authorVelázquez Medina, Sergio Leandroen_US
dc.contributor.authorPortero Ajenjo, Ulisesen_US
dc.date.accessioned2020-12-09T09:19:22Z-
dc.date.available2020-12-09T09:19:22Z-
dc.date.issued2020en_US
dc.identifier.issn2196-5625en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/76420-
dc.description.abstractDue to the low dispatchability of wind power, the massive integration of this energy source in power systems requires short-term and very short-term wind power output forecasting models to be as efficient and stable as possible. A study is conducted in the present paper of potential improvements to the performance of artificial neural network (ANN) models in terms of efficiency and stability. Generally, current ANN models have been developed by considering exclusively the meteorological information of the wind farm reference station, in addition to selecting a fixed number of time periods prior to the forecasting. In this respect, new ANN models are proposed in this paper, which are developed by: varying the number of prior 1-h periods (periods prior to the forecasting hour) chosen for the input layer parameters; and/or incorporating in the input layer data from a second weather station in addition to the wind farm reference station. It has been found that the model performance is always improved when data from a second weather station are incorporated. The mean absolute relative error (MARE) of the new models is reduced by up to 7.5%. Furthermore, the longer the forecasting horizon, the greater the degree of improvement.en_US
dc.languageengen_US
dc.relation.ispartofJournal Of Modern Power Systems And Clean Energyen_US
dc.sourceJournal of Modern Power Systems and Clean Energy [ISSN 2196-5625], v. 8 (3), p. 484-490, (Mayo 2020)en_US
dc.subject250616 Teledetección (Geología)en_US
dc.subject.otherArtificial Neural Networks (ANN)en_US
dc.subject.otherModel Performanceen_US
dc.subject.otherWind Power Forecastingen_US
dc.subject.otherWind Power Outputen_US
dc.titlePerformance Improvement of Artificial Neural Network Model in Short-term Forecasting of Wind Farm Power Outputen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.35833/MPCE.2018.000792en_US
dc.identifier.scopus85096609293-
dc.contributor.authorscopusid57220028821-
dc.contributor.authorscopusid57208134380-
dc.identifier.eissn2196-5420-
dc.description.lastpage490en_US
dc.identifier.issue3-
dc.description.firstpage484en_US
dc.relation.volume8en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateMayo 2020en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,078
dc.description.jcr3,265
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-0392-6605-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameVelázquez Medina, Sergio Leandro-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (616,64 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.