Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/76161
Campo DC Valoridioma
dc.contributor.authorRocco S, Claudio M.en_US
dc.contributor.authorEmmanuel Ramirez-Marquez, Joseen_US
dc.contributor.authorSalazar Aponte, Daniel E.en_US
dc.date.accessioned2020-12-01T10:29:16Z-
dc.date.available2020-12-01T10:29:16Z-
dc.date.issued2010en_US
dc.identifier.issn0951-8320en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/76161-
dc.description.abstractSolution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies' maximum source-sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach.en_US
dc.languageengen_US
dc.relation.ispartofReliability Engineering and System Safetyen_US
dc.sourceReliability Engineering and System Safety [ISSN 0951-8320], v. 95 (8), p. 887-896, (Agosto 2010)en_US
dc.subject3310 tecnología industrialen_US
dc.subject330411 Diseño de sistemas de calculoen_US
dc.subject.otherEvolutionary Approachen_US
dc.subject.otherAlgorithmsen_US
dc.subject.otherDesignen_US
dc.subject.otherModelsen_US
dc.subject.otherNetworken_US
dc.subject.otherInterdictionen_US
dc.subject.otherEvolutionaryen_US
dc.subject.otherOptimizationen_US
dc.subject.otherMulti-Objectiveen_US
dc.titleBi and tri-objective optimization in the deterministic network interdiction problemen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ress.2010.03.008en_US
dc.identifier.scopus79251610757-
dc.identifier.isi000279233300009-
dc.contributor.authorscopusid7004508307-
dc.contributor.authorscopusid6506312498-
dc.contributor.authorscopusid56240751500-
dc.identifier.eissn1879-0836-
dc.description.lastpage896en_US
dc.identifier.issue8-
dc.description.firstpage887en_US
dc.relation.volume95en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid771425-
dc.contributor.daisngid346740-
dc.contributor.daisngid1400577-
dc.description.numberofpages10en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Rocco, CM-
dc.contributor.wosstandardWOS:Ramirez-Marquez, JE-
dc.contributor.wosstandardWOS:Salazar, DE-
dc.date.coverdateEnero 2010en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.jcr1,899
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

35
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

30
actualizado el 15-dic-2024

Visitas

91
actualizado el 07-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.