Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/76161
DC FieldValueLanguage
dc.contributor.authorRocco S, Claudio M.en_US
dc.contributor.authorEmmanuel Ramirez-Marquez, Joseen_US
dc.contributor.authorSalazar Aponte, Daniel E.en_US
dc.date.accessioned2020-12-01T10:29:16Z-
dc.date.available2020-12-01T10:29:16Z-
dc.date.issued2010en_US
dc.identifier.issn0951-8320en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/76161-
dc.description.abstractSolution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies' maximum source-sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach.en_US
dc.languageengen_US
dc.relation.ispartofReliability Engineering and System Safetyen_US
dc.sourceReliability Engineering and System Safety [ISSN 0951-8320], v. 95 (8), p. 887-896, (Agosto 2010)en_US
dc.subject3310 tecnología industrialen_US
dc.subject330411 Diseño de sistemas de calculoen_US
dc.subject.otherEvolutionary Approachen_US
dc.subject.otherAlgorithmsen_US
dc.subject.otherDesignen_US
dc.subject.otherModelsen_US
dc.subject.otherNetworken_US
dc.subject.otherInterdictionen_US
dc.subject.otherEvolutionaryen_US
dc.subject.otherOptimizationen_US
dc.subject.otherMulti-Objectiveen_US
dc.titleBi and tri-objective optimization in the deterministic network interdiction problemen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ress.2010.03.008en_US
dc.identifier.scopus79251610757-
dc.identifier.isi000279233300009-
dc.contributor.authorscopusid7004508307-
dc.contributor.authorscopusid6506312498-
dc.contributor.authorscopusid56240751500-
dc.identifier.eissn1879-0836-
dc.description.lastpage896en_US
dc.identifier.issue8-
dc.description.firstpage887en_US
dc.relation.volume95en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid771425-
dc.contributor.daisngid346740-
dc.contributor.daisngid1400577-
dc.description.numberofpages10en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Rocco, CM-
dc.contributor.wosstandardWOS:Ramirez-Marquez, JE-
dc.contributor.wosstandardWOS:Salazar, DE-
dc.date.coverdateEnero 2010en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.jcr1,899
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

35
checked on Aug 25, 2024

WEB OF SCIENCETM
Citations

29
checked on Aug 25, 2024

Page view(s)

69
checked on May 19, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.