Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/75946
Título: | An automated vessel segmentation of retinal images using multiscale vesselness | Autores/as: | Ben Abdallah, Mariem Malek, Jihene Krissian, K. Tourki, Rached |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Blood Vessels Flux-Based Anisotropic Diffusion Multiscale Vesselness Ocular Fundus Image |
Fecha de publicación: | 2011 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Conferencia: | 8th International Multi-Conference on Systems, Signals and Devices, SSD'11 | Resumen: | The ocular fundus image can provide information on pathological changes caused by local ocular diseases and early signs of certain systemic diseases, such as diabetes and hypertension. Automated analysis and interpretation of fundus images has become a necessary and important diagnostic procedure in ophthalmology. The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. In this paper, we introduce an implementation of the anisotropic diffusion which allows reducing the noise and better preserving small structures like vessels in 2D images. A vessel detection filter, based on a multi-scale vesselness function, is then applied to enhance vascular structures. | URI: | http://hdl.handle.net/10553/75946 | ISBN: | 978-1-4577-0413-0 | DOI: | 10.1109/SSD.2011.5767376 | Fuente: | 8th International Multi-Conference on Systems, Signals and Devices, SSD'11, (Junio 2011) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.