Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/75675
Title: An ensemble approach for the diagnosis of cognitive decline with missing data
Authors: Garcia Baez, Patricio 
Fernández Viadero,Carlos 
Regidor García,José 
Suarez Araujo, Carmen Paz 
UNESCO Clasification: 120304 Inteligencia artificial
2490 Neurociencias
Keywords: Disease
Cognitive decline
Dementia
Diagnosis
Alzheimer's disease, et al
Issue Date: 2008
Project: Hacia Un Prototipo de Sistema Computacional de Inteligente de Ayuda Al Diagnóstico Del Deterioro Cognitivo Leve (Dcl) y de la Enfermedad de Alzheimer y Otras Demencias. 
Journal: Lecture Notes in Computer Science 
Conference: 3rd International Workshop on Hybrid Artificial Intelligence Systems 
Abstract: This work applies new techniques of automatic learning to diagnose neuro decline processes usually related to aging. Early detection of cognitive decline (CD) is an advisable practice under multiple perspectives. A study of neuropsychological tests from 267 consultations on 30 patients by the Alzheimer's Patient Association of Gran Canaria is carried out. We designed neural computational CD diagnosis systems, using a multi-net and ensemble structure that is applied to the treatment of missing data present in consultations. The results show significant improvements over simple classifiers. These systems would allow applying policies of early detection of dementias in primary care centers where specialized professionals are not present.
URI: http://hdl.handle.net/10553/75675
ISBN: 978-3-540-87655-7
ISSN: 0302-9743
DOI: 10.1007/978-3-540-87656-4_44
Source: Hybrid Artificial Intelligence Systems [ISSN 0302-9743], v. 5271, p. 353-360, (2008)
Appears in Collections:Actas de congresos
Thumbnail
PDF
Adobe PDF (112,21 kB)
Show full item record

SCOPUSTM   
Citations

6
checked on Dec 22, 2024

WEB OF SCIENCETM
Citations

2
checked on Feb 25, 2024

Page view(s)

89
checked on Aug 3, 2024

Download(s)

146
checked on Aug 3, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.