Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/75647
Título: A biased-randomized algorithm for the two-dimensional vehicle routing problem with and without item rotations
Autores/as: Domínguez Rivero, Oscar L.
Juan, Angel A.
Faulin, Javier
Clasificación UNESCO: 3317 Tecnología de vehículos de motor
Palabras clave: Multistart Algorithms
Biased Randomization
Vehicle Routing Problem
Heuristics
Vehicle Packing
Fecha de publicación: 2014
Publicación seriada: International Transactions in Operational Research 
Resumen: This paper proposes an efficient algorithm, with a reduced number of parameters, for solving the two-dimensional loading-capacitated vehicle routing problem (2L-CVRP). This problem combines two of the most important issues in logistics, that is, vehicle routing and packing problems. Our approach contemplates unrestricted loading including the possibility of applying 90 degrees rotations to each rectangular-shaped item while loading it into the vehicle, which is a realistic assumption seldom considered in the existing literature. The algorithm uses a multistart approach that is designed to avoid local minima and also to make the algorithm an easily parallelizable one. At each restart, a biased randomization of a savings-based routing algorithm is combined with an enhanced version of a classical packing heuristic to produce feasible good solutions for the 2L-CVRP. The proposed algorithm has been compared with the classical benchmarks for two different 2L-CVRP variants, that is, with and without item rotations. Experimental results show that our approach outperforms several best-known solutions from previous work, both in terms of quality and the computational time needed to obtain them.
URI: http://hdl.handle.net/10553/75647
ISSN: 0969-6016
DOI: 10.1111/itor.12070
Fuente: International Transactions In Operational Research [ISSN 0969-6016], v. 21 (3), p. 375-398, (Mayo 2014)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

56
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

51
actualizado el 17-nov-2024

Visitas

55
actualizado el 29-oct-2022

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.