Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/75590
Campo DC Valoridioma
dc.contributor.authorSerrano-Aguilar, P.en_US
dc.contributor.authorAbreu, R.en_US
dc.contributor.authorAnton-Canalis, L.en_US
dc.contributor.authorGuerra-Artal, C.en_US
dc.contributor.authorRamallo-Farina, Y.en_US
dc.contributor.authorGomez-Ulla, F.en_US
dc.contributor.authorNadal, J.en_US
dc.date.accessioned2020-11-16T14:05:08Z-
dc.date.available2020-11-16T14:05:08Z-
dc.date.issued2012en_US
dc.identifier.issn0007-1161en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/75590-
dc.description.abstractBackground: To develop and assess the technical validity of new computer-aided diagnostic software (CAD) for automated analyses of optical coherence tomography (OCT) images for the purpose of screening for neovascular age-related macular degeneration.Methods: Artificial visual techniques were used to develop the CAD in two steps: normalisation and feature vector extraction from OCT images; and training and classification by means of decision trees. Technical validation was performed by a retrospective study design based on OCT images randomly extracted from clinical charts. Images were classified as normal or abnormal to serve for screening purposes. Sensitivity, specificity, positive predictive values and negative predictive values were obtained.Results: The CAD was able to quantify image information by working in the perceptually uniform hue-saturation-value colour space. Particle swarm optimisation with Haar-like features is suitable to reveal structural features in normal and abnormal OCT images. Decision trees were useful to characterise normal and abnormal images using feature vectors obtained from descriptive statistics of detected structures. The sensitivity of the CAD was 96% and the specificity 92%.Conclusions This new CAD for automated analysis of OCT images offers adequate sensitivity and specificity to distinguish normal OCT images from those showing potential neovascular age-related macular degeneration. These results will enable its clinical validation and a subsequent cost-effectiveness assessment to be made before recommendations are made for population-screening purposes.en_US
dc.languageengen_US
dc.relation.ispartofBritish journal of ophthalmologyen_US
dc.sourceBritish Journal Of Ophthalmology [ISSN 0007-1161], v. 96 (4), p. 503-507, (Abril 2012)en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherAutomated detectionen_US
dc.subject.otherMaculopathyen_US
dc.titleDevelopment and validation of a computer-aided diagnostic tool to screen for age-related macular degeneration by optical coherence tomographyen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1136/bjophthalmol-2011-300660en_US
dc.identifier.scopus84858335440-
dc.identifier.isi000301938700010-
dc.contributor.authorscopusid6602510866-
dc.contributor.authorscopusid24474450700-
dc.contributor.authorscopusid8921191600-
dc.contributor.authorscopusid56629068500-
dc.contributor.authorscopusid25823987800-
dc.contributor.authorscopusid6701373077-
dc.contributor.authorscopusid24475436400-
dc.identifier.eissn1468-2079-
dc.description.lastpage507en_US
dc.identifier.issue4-
dc.description.firstpage503en_US
dc.relation.volume96en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid511070-
dc.contributor.daisngid1810561-
dc.contributor.daisngid3547239-
dc.contributor.daisngid5140885-
dc.contributor.daisngid3646496-
dc.contributor.daisngid665129-
dc.contributor.daisngid1850446-
dc.description.numberofpages5en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Serrano-Aguilar, P-
dc.contributor.wosstandardWOS:Abreu, R-
dc.contributor.wosstandardWOS:Anton-Canalis, L-
dc.contributor.wosstandardWOS:Guerra-Artal, C-
dc.contributor.wosstandardWOS:Ramallo-Farina, Y-
dc.contributor.wosstandardWOS:Gomez-Ulla, F-
dc.contributor.wosstandardWOS:Nadal, J-
dc.date.coverdateAbril 2012en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr2,019
dc.description.jcr2,725
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-1381-2262-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameGuerra Artal, Cayetano-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

8
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 17-nov-2024

Visitas

72
actualizado el 02-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.