Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/75499
DC FieldValueLanguage
dc.contributor.authorMartínez-Flórez, Guillermoen_US
dc.contributor.authorLeiva, Víctoren_US
dc.contributor.authorGómez-Déniz, Emilioen_US
dc.contributor.authorMarchant, Carolinaen_US
dc.date.accessioned2020-11-12T20:41:01Z-
dc.date.available2020-11-12T20:41:01Z-
dc.date.issued2020en_US
dc.identifier.issn2073-8994en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/75499-
dc.description.abstractIn this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal.en_US
dc.languageengen_US
dc.relation.ispartofSymmetryen_US
dc.sourceSymmetry [EISSN 2073-8994], v. 12 (9), 1439, (Septiembre 2020)en_US
dc.subject5302 Econometríaen_US
dc.subject.otherBeta Distributionen_US
dc.subject.otherCentered Skew-Normal Distributionen_US
dc.subject.otherMaximum-Likelihood Methodsen_US
dc.subject.otherMonte Carlo Simulationsen_US
dc.subject.otherProportionsen_US
dc.subject.otherR Softwareen_US
dc.subject.otherRatesen_US
dc.subject.otherZero/One Inflated Dataen_US
dc.titleA family of skew-normal distributions for modeling proportions and rates with zeros/ones excessen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/sym12091439en_US
dc.identifier.scopus85091013315-
dc.contributor.authorscopusid55536045100-
dc.contributor.authorscopusid22953630400-
dc.contributor.authorscopusid15724912000-
dc.contributor.authorscopusid55094211400-
dc.identifier.eissn2073-8994-
dc.identifier.issue9-
dc.relation.volume12en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Special Issue Symmetric and Asymmetric Distributions: Theoretical Developments and Applications IIen_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2020en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,385
dc.description.jcr2,713
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (695,97 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.