Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/75215
DC FieldValueLanguage
dc.contributor.authorRodríguez Bordón, Jacob Daviden_US
dc.contributor.authorAznárez, Juan Joséen_US
dc.contributor.authorMaeso, Orlandoen_US
dc.contributor.authorBhattacharya, Subhamoyen_US
dc.date.accessioned2020-11-04T19:23:43Z-
dc.date.available2020-11-04T19:23:43Z-
dc.date.issued2021en_US
dc.identifier.issn0016-8505en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/75215-
dc.description.abstractIn common engineering practice, foundation–soil–foundation interaction of shallow foundations is frequently ignored. This is presumably for cost/benefit reasons, since computationally demanding finite-element and/or boundary element models are required for that purpose, and its effects are usually assumed to be negligible. In this sense, the present paper provides a simple and inexpensive way of incorporating foundation–soil–foundation interaction through a numerically explicit stiffness matrix formulation. The necessary ingredients for homogeneous and non-homogeneous (shear modulus power-law variation with depth) half-spaces are given. The proposed approach is then applied to offshore wind turbines’ multiple suction caisson foundations (tripod and tetrapod), where it is observed that the foundation–soil–foundation interaction is significant. Its range of validity is also established, and valuable ready-to-use closed-form formulas for the correction factors of the stiffnesses of tripod and tetrapod groups are also derived. The methodology is applicable as long as the spacing between foundations is somewhat greater than the foundation depth.en_US
dc.languageengen_US
dc.relationInfluencia de Los Fenómenos de Interacción Suelo-Estructura en la Respuesta Sísmica de Aerogeneradores Marinosen_US
dc.relation.ispartofGeotechniqueen_US
dc.sourceGeotechnique [ISSN 0016-8505], v. 71 (8), p. 686-699, (Agosto 2021)en_US
dc.subject3313 Tecnología e ingeniería mecánicasen_US
dc.subject.otherElasticityen_US
dc.subject.otherFootings/foundationsen_US
dc.subject.otherOffshore engineeringen_US
dc.subject.otherSoil/structure interactionen_US
dc.subject.otherStiffnessen_US
dc.titleSimple approach for including foundation-soil-foundation interaction in the static stiffnesses of multi-element shallow foundationsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1680/jgeot.19.P.005en_US
dc.identifier.isi000673073600004-
dc.identifier.eissn1751-7656-
dc.description.lastpage699en_US
dc.identifier.issue8-
dc.description.firstpage686en_US
dc.relation.volume71en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid44684823-
dc.contributor.daisngid44685657-
dc.contributor.daisngid43346393-
dc.contributor.daisngid44665915-
dc.description.notasIn common engineering practice, foundation–soil–foundation interaction of shallow foundations is frequently ignored. This is presumably for cost/benefit reasons, since computationally demanding finite-element and/or boundary element models are required for that purpose, and its effects are usually assumed to be negligible. In this sense, the present paper provides a simple and inexpensive way of incorporating foundation–soil–foundation interaction through a numerically explicit stiffness matrix formulation. The necessary ingredients for homogeneous and non-homogeneous (shear modulus power-law variation with depth) half-spaces are given. The proposed approach is then applied to offshore wind turbines’ multiple suction caisson foundations (tripod and tetrapod), where it is observed that the foundation–soil–foundation interaction is significant. Its range of validity is also established, and valuable ready-to-use closed-form formulas for the correction factors of the stiffnesses of tripod and tetrapod groups are also derived. The methodology is applicable as long as the spacing between foundations is somewhat greater than the foundation depth.en_US
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Bordon, JDR-
dc.contributor.wosstandardWOS:Aznarez, JJ-
dc.contributor.wosstandardWOS:Maeso, O-
dc.contributor.wosstandardWOS:Bhattacharya, S-
dc.date.coverdateAgosto 2021en_US
dc.identifier.ulpgcen_US
dc.description.sjr2,344
dc.description.jcr5,554
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.deptGIR SIANI: Mecánica de los Medios Continuos y Estructuras-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0001-5820-2527-
crisitem.author.orcid0000-0003-4576-7304-
crisitem.author.orcid0000-0002-4102-9585-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameRodríguez Bordón, Jacob David-
crisitem.author.fullNameAznárez González, Juan José-
crisitem.author.fullNameMaeso Fortuny, Orlando Francisco-
crisitem.project.principalinvestigatorAznárez González, Juan José-
Appears in Collections:Artículos
Thumbnail
post-print
Adobe PDF (681,14 kB)
Show simple item record

WEB OF SCIENCETM
Citations

9
checked on Dec 15, 2024

Page view(s)

182
checked on Feb 24, 2024

Download(s)

343
checked on Feb 24, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.