Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/74926
Title: | DFT Modelling Tools in CO2 Conversion: Reaction Mechanism Screening and Analysis | Authors: | Azofra Mesa, Luis Miguel Sun, Chenghua |
UNESCO Clasification: | 221001 Catálisis | Issue Date: | 2018 | Publisher: | Royal Society of Chemistry (RSC) | Abstract: | The computer-aided molecular modelling of the catalytic conversion of carbon dioxide (CO2) into ‘green’ fuels offers a comprehensive view of the chemical events taking place during the process. This provides crucial information about ‘where’, ‘how’, and ‘why’ and also allows the in silico hypothesising of those promising catalysts before the experimental testing of their catalytic performance. Among the variety of quantum mechanical approaches, well-resolved density functional theory (DFT) has been proven as a fast, robust, and powerful methodology for such purposes. In the present chapter, we review different fundamental aspects of the chemical reactivity with special emphasis on the theoretical point-of-view as well as fully treating the thermodynamics, kinetics, and additional aspects for the DFT modelling of the CO2 conversion mechanism screening through the electrochemical approach. | URI: | http://hdl.handle.net/10553/74926 | ISBN: | 978-1-78262-042-6 | ISSN: | 2044-0782 | DOI: | 10.1039/9781782623809-00136 | Source: | Electrochemical Reduction of Carbon Dioxide: Overcoming the Limitations of Photosynthesis. Chapter 6, p. 136 - 159 |
Appears in Collections: | Capítulo de libro |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.