Please use this identifier to cite or link to this item:
Title: Mechanisms of Formation of Hemiacetals: Intrinsic Reactivity Analysis
Authors: Azofra Mesa, Luis Miguel 
Alkorta, Ibon
Elguero, José
Toro-Labbé, Alejandro
UNESCO Clasification: 2307 Química física
Issue Date: 2012
Journal: Journal of Physical Chemistry A 
Abstract: The reaction mechanism of the hemiacetal formation from formaldehyde and methanol has been studied theoretically at the B3LYP/6-311+ +G(d,p) level. In addition to the study of the reaction between the isolated reactants, three different kinds of catalysis have been explored. The first one examines the use of assistants, especially bridging water molecules, in the proton transfer process. The second one attempts to increase the local electrophilicity of the carbon atom in formaldehyde with the presence of a Brønsted acid (H+ or H3O+ ). The last one considers the combined effect of both catalytic strategies. The reaction force, the electronic chemical potential, and the reaction electronic flux have been characterized for the reaction path in each case. In general, it has been found that structural rearrangements represent an important energetic penalty during the activation process. The barriers for the reactions catalyzed by Brønsted acids show a high percentage of electronic reorganization contribution. The catalytic effects for the reactions assisted by water molecules are due to a reduction of the strain in the transition state structures. The reaction that includes both acid catalysis and proton assistance transfer shows the lowest energy barrier (25.0 kJ mol−1 ).
ISSN: 1089-5639
DOI: 10.1021/jp304495f
Source: Journal of Physical Chemistry A [ISSN 1089-5639], 116, p. 8250−8259
Appears in Collections:Artículos
Adobe PDF (1,69 MB)
Show full item record


checked on May 26, 2024

Page view(s)

checked on Feb 17, 2024


checked on Feb 17, 2024

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.