Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/74752
Título: Predictors of deep learning in undergraduate students
Autores/as: Núñez Alonso, Juan Luis 
Fernández Sarmiento, Celia 
Grijalvo Lobera, Fernando 
Clasificación UNESCO: 580106 Evaluación de alumnos
580206 Análisis, realización de modelos y planificación estadística
Fecha de publicación: 2014
Conferencia: International Congress on Education, Innovation and Learning Tecnologies
Resumen: Students use different strategies to learn new content. Sometimes they use more superficial methods, such as repeating the material again and again until they remember it, whereas on other occasions they prepare and organize the material, carrying out a deeper learning. In superficial learning, students adopt a passive role and in deep learning they try to relate the new information with the previous knowledge. The use of deep strategies entails remembering better the content and higher results. The aim of the present research is to identify the predictors of deep learning in undergraduate students. Participants were 276 undergraduate students of University of Las Palmas de Gran Canaria, 241 female and 29 male (6 missing values), with an average age of 21.80 years (SD = 2.93). The Spanish version [1] of the Assessment Experience Questionnaire (AEQ) was used. For this research, items were formulated in a positive sense and seven subscales were used as independent variables: quantity of effort, coverage of syllabus, quantity and quality of feedback, use of feedback, appropriate assessment, clear goals and standards, and learning from the examination. The dependent variable was the deep approach subscale.
URI: http://hdl.handle.net/10553/74752
Fuente: International Congress on Education, Innovation and Learning Tecnologies. Barcelona, España, 2014
Colección:Actas de congresos
miniatura
Adobe PDF (31,39 kB)
Vista completa

Visitas

95
actualizado el 31-oct-2024

Descargas

24
actualizado el 31-oct-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.