Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/74712
DC FieldValueLanguage
dc.contributor.authorKu, Taoen_US
dc.contributor.authorVeltkamp, Remco C.en_US
dc.contributor.authorBoom, Basen_US
dc.contributor.authorDuque-Arias, Daviden_US
dc.contributor.authorVelasco-Forero, Santiagoen_US
dc.contributor.authorDeschaud, Jean-Emmanuelen_US
dc.contributor.authorGoulette, Francoisen_US
dc.contributor.authorMarcotegui, Beatrizen_US
dc.contributor.authorOrtega Trujillo, Sebastián Eleazaren_US
dc.contributor.authorTrujillo Pino, Agustín Rafaelen_US
dc.contributor.authorSuárez, Jose Pabloen_US
dc.contributor.authorSantana Núñez, José Miguelen_US
dc.contributor.authorRamírez, Cristianen_US
dc.contributor.authorAkadas, Kiranen_US
dc.contributor.authorGangisetty, Shankaren_US
dc.date.accessioned2020-10-14T07:19:21Z-
dc.date.available2020-10-14T07:19:21Z-
dc.date.issued2020en_US
dc.identifier.issn0097-8493en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/74712-
dc.description.abstractScene understanding of large-scale 3D point clouds of an outer space is still a challenging task. Compared with simulated 3D point clouds, the raw data from LiDAR scanners consist of tremendous points returned from all possible reflective objects and they are usually non-uniformly distributed. Therefore, its cost- effective to develop a solution for learning from raw large-scale 3D point clouds. In this track, we provide large-scale 3D point clouds of street scenes for the semantic segmentation task. The data set consists of 80 samples with 60 for training and 20 for testing. Each sample with over 2 million points represents a street scene and includes a couple of objects. There are five meaningful classes: building, car, ground, pole and vegetation. We aim at localizing and segmenting semantic objects from these large-scale 3D point clouds. Four groups contributed their results with different methods. The results show that learning- based methods are the trend and one of them achieves the best performance on both Overall Accuracy and mean Intersection over Union. Next to the learning-based methods, the combination of hand-crafted detectors are also reliable and rank second among comparison algorithms.en_US
dc.languageengen_US
dc.relationRealización de un programa de actuación conjunta de investigación y desarrollo en clasificación y visualización de líneas eléctricasen_US
dc.relation.ispartofComputers and Graphicsen_US
dc.sourceComputers and Graphics [ISSN 0097-8493], v. 93, p. 13-24, (Diciembre 2020)en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject330499 Otras (especificar)en_US
dc.subject.otherSHRECen_US
dc.subject.other3D point clouden_US
dc.subject.otherSemantic segmentationen_US
dc.subject.otherBenchmarken_US
dc.subject.otherShrec 2020en_US
dc.subject.otherVisualización gráficaen_US
dc.titleSHREC 2020: 3D point cloud semantic segmentation for street scenesen_US
dc.typeArticleen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.relation.conference3DOR 2020 - 13th 3D Object Retrieval Workshop-
dc.identifier.doi10.1016/j.cag.2020.09.006en_US
dc.identifier.scopus85092687314-
dc.contributor.authorscopusid57189051747-
dc.contributor.authorscopusid7003421646-
dc.contributor.authorscopusid57214496854-
dc.contributor.authorscopusid57211181361-
dc.contributor.authorscopusid26025357400-
dc.contributor.authorscopusid36551106100-
dc.contributor.authorscopusid6602218174-
dc.contributor.authorscopusid6603210105-
dc.contributor.authorscopusid57191042210-
dc.contributor.authorscopusid22433888800-
dc.contributor.authorscopusid7202040282-
dc.contributor.authorscopusid55349392800-
dc.contributor.authorscopusid57219437834-
dc.contributor.authorscopusid57219435994-
dc.contributor.authorscopusid57217523512-
dc.description.lastpage24en_US
dc.description.firstpage13en_US
dc.relation.volume93en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasEmpresa: Cyclomedia Technology, de ámbito europeoen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2020en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,344
dc.description.jcr1,936
dc.description.sjrqQ2
dc.description.jcrqQ3
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Cartografía y Expresión Gráfica en La Ingeniería-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-6212-5317-
crisitem.author.orcid0000-0001-8140-9008-
crisitem.author.orcid0000-0002-5391-9964-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameOrtega Trujillo,Sebastián Eleazar-
crisitem.author.fullNameTrujillo Pino, Agustín Rafael-
crisitem.author.fullNameSuárez Rivero, José Pablo-
crisitem.author.fullNameSantana Núñez, José Miguel-
crisitem.project.principalinvestigatorTrujillo Pino, Agustín Rafael-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

21
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

16
checked on Nov 17, 2024

Page view(s)

133
checked on May 18, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.