Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/74712
Título: | SHREC 2020: 3D point cloud semantic segmentation for street scenes | Autores/as: | Ku, Tao Veltkamp, Remco C. Boom, Bas Duque-Arias, David Velasco-Forero, Santiago Deschaud, Jean-Emmanuel Goulette, Francois Marcotegui, Beatriz Ortega Trujillo, Sebastián Eleazar Trujillo Pino, Agustín Rafael Suárez, Jose Pablo Santana Núñez, José Miguel Ramírez, Cristian Akadas, Kiran Gangisetty, Shankar |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes 330499 Otras (especificar) |
Palabras clave: | SHREC 3D point cloud Semantic segmentation Benchmark Shrec 2020, et al. |
Fecha de publicación: | 2020 | Proyectos: | Realización de un programa de actuación conjunta de investigación y desarrollo en clasificación y visualización de líneas eléctricas | Publicación seriada: | Computers and Graphics | Conferencia: | 3DOR 2020 - 13th 3D Object Retrieval Workshop | Resumen: | Scene understanding of large-scale 3D point clouds of an outer space is still a challenging task. Compared with simulated 3D point clouds, the raw data from LiDAR scanners consist of tremendous points returned from all possible reflective objects and they are usually non-uniformly distributed. Therefore, its cost- effective to develop a solution for learning from raw large-scale 3D point clouds. In this track, we provide large-scale 3D point clouds of street scenes for the semantic segmentation task. The data set consists of 80 samples with 60 for training and 20 for testing. Each sample with over 2 million points represents a street scene and includes a couple of objects. There are five meaningful classes: building, car, ground, pole and vegetation. We aim at localizing and segmenting semantic objects from these large-scale 3D point clouds. Four groups contributed their results with different methods. The results show that learning- based methods are the trend and one of them achieves the best performance on both Overall Accuracy and mean Intersection over Union. Next to the learning-based methods, the combination of hand-crafted detectors are also reliable and rank second among comparison algorithms. | URI: | http://hdl.handle.net/10553/74712 | ISSN: | 0097-8493 | DOI: | 10.1016/j.cag.2020.09.006 | Fuente: | Computers and Graphics [ISSN 0097-8493], v. 93, p. 13-24, (Diciembre 2020) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.