Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/74698
Título: | Computational study based on supervised neural architectures for fluorescence detection of fungicides | Autores/as: | Álvarez Romero, Yeray Garcia Baez, Patricio Suarez Araujo, Carmen Paz |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Artificial neural networks Neural ensembles Benzimidazole fungicides Fluorescence detection Environment, et al. |
Fecha de publicación: | 2013 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 12th International Work-Conference on Artificial Neural Networks (IWANN) | Resumen: | Benzimidazole fungicides (BFs) are a type of pesticide of high environmental interest characterized by a heavy spectral overlap which complicates its detection in mixtures. In this paper we present a computational study based on supervised neural networks for a multi-label classification problem. Specifically, backpropagation (BPN) with data fusion and ensemble schemes is used for the simultaneous resolution of difficult multi-fungicide mixtures. We designed, optimized and compared simple BPNs, BPNs with data fusion and BPN ensembles. The information environment used is made up of synchronous and conventional BF fluorescence spectra. The mixture spectra are not used in the training stage. This study allows the use of supervised neural architectures to be compared to unsupervised ones, which have been developed in previous works, for the identification of BFs in complex multi-fungicide mixtures. The study was carried out using a new software tool, MULLPY, which was developed in Python. | URI: | http://hdl.handle.net/10553/74698 | ISBN: | 978-3-642-38678-7 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-38679-4_10 | Fuente: | Advances In Computational Intelligence, Part I [ISSN 0302-9743], v. 7902, p. 114-123, (2013) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.