Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/74526
Título: Geometric invariant shape representation using morphological multiscale analyses and applications to shape classification
Autores/as: Alvarez, L 
Blanc, A. P.
Mazorra, L. 
Santana Pérez, Francisco J 
Clasificación UNESCO: 120304 Inteligencia artificial
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Fecha de publicación: 2002
Publicación seriada: Cuadernos del Instituto Universitario de Ciencias y Tecnologías Cibernéticas 
Resumen: This is a revised version of paper [2]. We have putted together papers [2] and [1], and we have included a lot of changes in order the paper be more understandable, readable and complete, we have also included a new application of the technique to the problem of shape classification. We present a new geometric invariant shape representation using morphological multiscale analyses. The geometric invariant is based on the area and perimeter evolution of the shape under the action of a morphological multiscale analysis. First, we present some theoretical results on the perimeter and area evolution across the scales of a shape. In the case of similarity transformations, the proposed geometric invariant is based on a scale-normalized evolution of the isoperimetric ratio of the shape. In the case of general affine geometric transformations the proposed geometric invariant is based on a scale-normalized evolution of the area. We present some numerical experiments to evaluate the performance of the proposed models. We present an application of this technique to the problem of shape classification on a real shape database and we study the well-posedness of the proposed models in the framework of viscosity solution theory
URI: http://hdl.handle.net/10553/74526
ISSN: 1575-6807
Fuente: Cuadernos del Instituto Universitario de Ciencias y Tecnologías Cibernéticas [ISSN 1575-6807], n. 0020, p. 1-35
Colección:Artículos
miniatura
PDF
Adobe PDF (2,35 MB)
Vista completa

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.