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Abstract

This is a revised version of paper [2]. We have putted together papers [2] and [1], and we have
included a lot of changes in order the paper be more understandable, readable and complete, we
have also included a new application of the technique to the problem of shape classification. We
present a new geometric invariant shape representation using morphological multiscale analyses.
The geometric invariant is based on the area and perimeter evolution of the shape under the action
of a morphological multiscale analysis. First, we present some theoretical results on the perimeter
and area evolution across the scales of a shape. In the case of similarity transformations, the
proposed geometric invariant is based on a scale-normalized evolution of the isoperimetric ratio of
the shape. In the case of general affine geometric transformations the proposed geometric invariant
is based on a scale-normalized evolution of the area. We present some numerical experiments to
evaluate the performance of the proposed models. We present an application of this technique to
the problem of shape classification on a real shape database and we study the well-posedness of
the proposed models in the framework of viscosity solution theory.

1 Introduction.

Shape representation methods play an important role in systems for object recognition and
analysis. According to the classification of shape analysis methods proposed by [26] and [21],
by shape representation methods we mean methods which provide a non-numeric represen-
tation of the shape (e.g. a graph). Shape description refers to the methods that result in
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a numeric descriptor of the shape and could be a step subsequent to shape representation.
Another classification of shape analysis methods is based on the use of shape boundary
points as opposed to the interior of the shape. The two resulting classes of methods are
known as boundary (also called external) and global (also called internal), respectively.

In the last years, multiscale analyses have became a common tool for many tasks in
computer vision. A multiscale analysis can be defined as an operator Tt(f) which provides
for an original image f a sequence of images Tt(f) which represent the image at a coarse
scale t.

In this paper we deal with morphological multiscale analyses, which satisfy the morpho-
logical invariance, that is, the multiscale analysis Tt(f) commutes with any increasing
histogram modification of the image. It means that for any increasing function g(.)

Tt(f) ◦ g = Tt(f ◦ g).

The underlying hypothesis associated to this morphological invariance is that the contrast
between the different objects present in the image is not important at all, and that all the
information present in the image is described by the geometry of the level sets of the image.
In particular, the way a shape changes under the action of a morphological multiscale analysis
depends only on the geometry of its boundary.

The main goal of this paper is to use the nice geometric and morphological invariant
properties of the morphological multiscale analyses in order to find out a reliable global
shape representation. Linear scale-space shape representations have been studied by different
authors in the literature: [30] proposed a scale space filtering approach by tracking the
position of the inflection points in signals filtered by gaussians. [8] proposed a representation
called the curvature primal sketch. The shape boundary is filtered with gaussian functions
of increasing width to obtain a boundary curvature-based multiscale representation of the
shape. [25] also propose a scale-space boundary shape representation based on the curvature
evolution across the scales. In the context of the morphological scale spaces, [22] proposed
the pattern spectrum representation based on the area evolution of a shape obtained by
opening the shape with a disk of increasing size. [11] and [12], proposed a method for affine
invariant shape recognition based on the affine invariant morphological multiscale analysis.
They use the multiscale analysis to recover characteristic points in the shape. [13], use
the affine invariant multiscale analysis to smooth the images before a local encoding of
the shape elements.[20] introduced the named reaction-diffusion space where they combine
constant and curvature deformation for shape analysis.

The main underlying idea we propose in this paper is that if we take any global invariant
of a shape and we follow the evolution of such invariant under the action of a morphological
multiscale analysis then, this evolution is also un invariant of the shape, but it contains much
more robust and discriminant information of the geometry of the shape that just the invariant
for the initial shape. In particular, we propose in this paper to use the evolution of the area
and/or perimeter of the shape across the scales under the action of different morphological
multiscale analyses as basic tools to find out scale-space global shape representation. The
main advantage of the morphological multiscale analyses with respect to the classical linear-
scale space is that the evolution of the shape depends just on the geometry of the shape and
it is not depends at all on the contrast of the shape with respect to the background or the
relative location of other shapes presented in the image which is not the case in the linear
scale-space where the way a shape evolves depends on the contrast and location with respect
to other shapes presented in the image.
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As it was proved by [3], under some minimal architectural assumptions, all the morpho-
logical and similarity invariant multiscale analyses are generated by the partial differential
equation:

∂u

∂t
= β(t curv(u)) ‖∇u‖ , (1)

where β(.) is a nondecreasing function and curv(u)(x, y) is the curvature of the level line
passing by the point (x, y), that is:

curv(u) = div

( ∇u

‖∇u‖
)

. (2)

Therefore if u(t, x, y) is the solution of equation (1), for the initial datum f, then

u(t, x, y) = Tt(f)(x, y).

In order to simplify a bit the model, we are going to remove the t dependence inside the
term β(t curv(u)), that is we consider the equation:

∂u

∂t
= β(curv(u)) ‖∇u‖ . (3)

We can show easily that with this change in the equation, the underlying multiscale analysis
keep the morphological and Euclidean transformation invariant, but it loss, in general, the
zoom invariant. We are going to show that in order to recover the zoom invariant we have
to fit the function β(s) to be a polynomial. We notice that these morphological multiscale
analyses are also invariant under symmetry transformations ((x, y) → (±x,±y)) .

Following the morphological principle, we will consider that a shape S0 is given by a level
set of the image f, that is:

S0 = {(x, y) : f(x, y) < λ},
for some λ, where for a set A, we denote by A the closure of A, that is, the minimum closed
set including A. We will denote by S(t) the evolution across the scales of S0, that is:

S(t) = {(x, y) : Tt(f)(x, y) < λ}.

We will also denote by C(t) the boundary of S(t). For the case C(t) is a family of single
Jordan curves, we can interpret the evolution of C(t) in terms of curve evolution. In fact,
C(t) is a solution to the curve evolution equation

∂C

∂t
= β(k) ~N, (4)

where ~N represents the unit inward normal direction to the curve C(t) and k is the curvature.
In the last years, a lot research have been devoted to this curve evolution equation see, for
instance, [4], [5], [6],[14], [15], [16], [3], [7], [27].

The organization of the paper is as follows: In section 2, we present some theoretical
results on the area and perimeter evolution of a shape under the action of a morphological
multiscale analysis. In section 3, we analyze the similarity invariant shape representation,
and we propose as geometric invariant a scale-normalized isoperimetric ratio evolution. In
section 4, we study the affine invariant shape representation, and we propose as geometric
invariant a scale-normalized area ratio evolution. In section 5, we present some numerical
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experiments. In section 6 we present an application of the proposed models to the clas-
sification of shapes in a real sea animals shape database. In section 7 we present some
conclusions. Finally, in an appendix we show the mathematical justification of some of the
results we present in this paper, and we study the well-posedness of the models we propose
in the framework of the viscosity solution theory.

2 Area and perimeter evolution of a shape under the

action of a morphological multiscale analysis

First, we notice that the function |S(t)| = Area(S(t)) and |C(t)| = Perimeter(C(t) are
Euclidean invariants of S0. Indeed, since the multiscale analysis (3) is invariant under
Euclidean transformations, given two shapes S0, S ′0, S(t), S ′(t) its corresponding evolutions,
such that there exists a Euclidean transformation E satisfying S ′0 = E(S0), then

|S(t)| = |S ′(t)| for any t > 0

|C(t)| = |C ′(t)| for any t > 0.

Therefore the function t → |S(t)| and t → |C(t)| are Euclidean invariants of the shape S0.
In this section, we will show formulas for the evolution of perimeter and area, of a

shape, following equation (3). The results that we present here are a generalization of the
ones presented in [16] for the Euclidean shortening flow which corresponds to the particular
choice β(s) = s. We will assume that for some t0 > 0, C(t), the boundary of the shape S(t)
at scale t, is a family of single Jordan curves for 0 ≤ t < t0. We notice that since a Jordan
curve can not be empty, then the perimeter and area of the shape is always properly defined.

Proposition 1 If for 0 ≤ t < t0, C(t) is a family of single Jordan curves, then the evolution
across the scales of the length of the curve |C(t)| under the action of (3), is given by

∂|C(t)|
∂t

= −
∫ |C(t)|

0

kβ(k)ds, (5)

with s the arclength along the curve and k the curvature.

Proof : see appendix.
Remark : As a special case, when β(k) is a constant (β(k) ≡ M) , we have:

∂|C(t)|
∂t

= −M

∫ |C(t)|

0

kds = −2πM,

and therefore:
|C(t)| = |C(0)| − 2πMt.

So in this particular case, the evolution of the perimeter |C(t)| does not depend on the
geometry of C(t), and therefore, |C(t)| can not be used to discriminate between different
shapes.

Proposition 2 If for 0 ≤ t < t0, C(t) is a family of single Jordan curves, then the evolution
across the scales of the area |S(t)| under the action of (3), is given by

∂|S(t)|
∂t

= −
∫ |C(t)|

0

β(k)ds. (6)
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Proof : See appendix.
Remark : when β(k) = k, which corresponds to the mean curvature motion equation, we
have:

∂|S(t)|
∂t

= −
∫ |C(t)|

0

kds = −2π,

and therefore:
|S(t)| = |S0| − 2πt.

So in this case, the evolution of the area |S(t)| does not depend on the geometry of C(t),
and therefore |S(t)| can not be used to discriminate between different shapes. We notice
that this result is true only for the particular choice β(s) = s, and that in general, for other
values of β(s) the evolution of the area depends on the geometry of S0.
Remark. The results presented above concerns the case of shapes without holes, that

is, the contour is just a single Jordan curve. However, we can easily extend the results to
shapes with a finite number of holes. That is, for instance, if for 0 ≤ t < t0 the boundary
of the shape under the action of the morphological multiscale analysis is given by a set of
collections of Jordan curve evolution Ci(t) for i = 0, .., N where C0 is the exterior contour,
then the area evolution of the shape is given by :

∂|S(t)|
∂t

= −
∫ |C0(t)|

0

β(k)ds +
N∑

i=1

∫ |Ci(t)|

0

β(k)ds. (7)

One interesting observation is that in the case β(k) = k the area evolution of the shape
would be given by

|S(t)| = |S0| − 2(1−N)πt,

where N represents the number of holes of the shapes. So in particular, we can detect the
number of holes of a shape following the slope of the area evolution of the shape under the
action of the mean curvature motion equation.

3 Morphological Similarity Invariant Representation

of a Shape.

In this section, we are going to study how to find out a similarity invariant using the area
and perimeter evolution of S(t). A similarity transformation H is generated by rotations,
translations and zooming, and it can be expressed in the following way:

H(x, y) = s


 cos(α) sin(α)

− sin(α) cos(α)





 x

y


 +


 a

b




where α is the rotation angle, (a, b) the translation vector and s the zoom factor. We will say
that a multiscale analysis is invariant under similarity transformations if for any similarity
transformation H, there exists a function t → t′(H, t) such that

H
(
Tt′(H,t)(f)

)
= Tt(H(f)).

First, we will characterize the morphological multiscale analyses invariant under similarity
transformation.
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Proposition 3 Let be Tt(f) a morphological multiscale analysis given by (3). Tt(f) is
invariant under similarity transformations if and only if there exists a constant p ≥ 0 such
that:

β(s) =





β(1)sp if s ≥ 0

β(−1) (−s)p if s < 0.
(8)

Moreover if s is the zoom factor of the similarity transformation H, then

t′(H, t) = sp+1t.

Proof : See appendix.
Remark: We notice from the previous proposition that the multiscale analysis Tt(f) is not
scale invariant in the sense that a similarity transformation does not modify the space and
scale variables in the same way, it means that if we apply a zoom (x, y) → (sx, sy) to the
shape, then the scale is modified by t → sp+1t 6= st. In order to have the scale invariant
property we need just to replace t with the new scale t̃ using the transformation:

t̃ = (t(p + 1))
1

p+1 . (9)

We then have that (x, y, t̃) → (sx, sy, st̃) under the action of the zoom transformation
H(x, y) = (sx, sy). Indeed,

H(Tt̃s(f)) = H(T (ts)p+1

p+1

(f)) = T (t)p+1

p+1

(H(f)) = Tt̃(H(f)).

The new scale variable t̃ has a more physical meaning. For instance a circle of radius R0

vanishes in a scale proportional to t̃ = R0 (see lemma 3 in the appendix for more details).
In the particular case of β(1) = 1, the vanishing scale of a circle (that is, the scale at the
circle disappears) is equal to its radius, so we can interpret that at the scale t̃, all the objects
initially included in a disk of radius t̃ have been removed by the multiscale analysis. So,
in some way, the scale variable t̃ represents the resolution of the morphological multiscale
analysis.
Remark: We notice that, in fact, the similarity invariant morphological multiscale analysis
depends on 3 parameters, the power p ≥ 0 and the constant β−1 = β(−1) and β1 = β(1)
which are not completely free because the function β(s) has to be nondecreasing. It means
that if p > 0 then β1 ≥ 0 and β−1 ≤ 0. In what follows we will represent the similarity
invariant multiscale analyses Tt(f) by these 3 parameters, that is :

Tt(f) = T
(p,β−1,β1)
t (f).

We will use also the notation

S(p,β−1,β1)(t)

C
(p,β−1,β1)

(t),

to indicate the evolution of the shape S0 and its boundary C0 following the multiscale analysis
given by parameters (p, β−1, β1).

We notice that if we add to the morphological multiscale analysis the invariance under the
inversion of the histogram (that is to change f by −f) then we can deduce easily (for p > 0)
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that β1 have to be equal to −β−1. In what follow we are not going to assume this invariance
in order to have the possibility to choose different relations between the parameters β1 and
β−1. Anyway we will see in section 6 that by combining several morphological multiscale
analyses we can get distance criteria between shapes which are invariant under histogram
inversion transformations.

Among the different possibilities of similarity invariant morphological multiscale analyses
let us mention 3 examples which correspond to some particular choices for (p, β−1, β1). The
first example is given for the classical mathematical morphology operators dilation and
erosion, which corresponds to the choices

(p, β−1, β1) = (0, 1, 1) (10)

(p, β−1, β1) = (0,−1,−1). (11)

See for instance [3] for more details about the relation between the classical mathematical
morphology operators and the choice of (p, β−1, β1) presented above. The second example of
multiscale analysis is based on the mean curvature motion operator, where we have typically
3 options for the choices of (p, β−1, β1):

(p, β−1, β1) = (1,−1, 1) (12)

(p, β−1, β1) = (1, 0, 1)

(p, β−1, β1) = (1,−1, 0).

The third example of multiscale analysis that we consider is based on the affine invariant
multiscale analysis discovered by [3] and [27] in an independent way. In this case, we will
use, again, 3 different choices for (p, β−1, β1):

(p, β−1, β1) = (
1

3
,−1, 1) (13)

(p, β−1, β1) = (
1

3
, 0, 1)

(p, β−1, β1) = (
1

3
,−1, 0).

In figure 1 we illustrate a shape contour evolution under the action of a morphological
multiscale analysis. In the exterior contour of the shape, the evolution of the convexe part
of the contour is governed by parameter β1, and the evolution of the concave part of the
contour is governed by parameter β−1. In the contour of the hole of the shape is the opposite,
that is the convexe part is governed by β−1, and the concave part by β1 (the reason is
that in the contour of the holes the sign of the curvature, using equation (2), changes).
Therefore if we take p > 0 and (β−1, β1) = (−1, 1), what we expect is that both contours
(exterior and interior), under the action of the multiscale analysis, tend to disappear in an
independent way, and the concave parts tend to change to convexe. However if we take
(β−1, β1) = (0, 1), then the concave part of the exterior contour remains fix (as far as they
remain concave), and the convexe part of the hole remains fix. So for the shape of figure 1 we
expect that the convexe part of the exterior contours evolves, the interior disk remains fix, so
a singularity is going to be developed when the exterior contour touches the interior disk. So,
we note that the evolution is completely different with respect to the case (β−1, β1) = (−1, 1),
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and it provides a completely different information about the geometry of the shape. In a
similar way, if we take (β−1, β1) = (−1, 0), then, we expect that the convexe part of the
exterior contour remains fix and the concave part of the exterior contour and the inside
hole moves, so what happens, as it is shown in the appendix, is that asymptotically the
shape converges towards the convexe hull of the initial shape. So we note that combining
the information of the evolutions for the 3 cases (β−1, β1) ∈ {(−1, 1), (0, 1), (−1, 0)} we
obtain a fruitful information about the shape geometry, and it is exactly what we will use
later to get a discriminant shape representation. Of course we can choose any other set
of values for the parameter (p, β−1, β1) but we think that the choice we make above are,
in some way representative, first, because, the values p = 1, 1

3
, correspond to the classic

exponent for curvature evolution in the Euclidean and affine case and combining the values
of (β−1, β1) ∈ {(−1, 1), (0, 1), (−1, 0)} we characterize in a powerful way the shape following
the geometry of their concave and convexe part.

Figure 1: Illustration of a shape contour evolution under the action of a morphological
multiscale analysis

Remark. Another interesting morphological multiscale analysis used for shape analysis is
the named reaction-diffusion space introduced in [20]. This multiscale analysis is generated
by the curve evolution equation:

∂C

∂t
= (β0 + β1k) ~N, (14)

where β0, β1 are 2 parameters. An interesting remark is that this multiscale analysis is
morphological and Euclidian invariant but it is not similarity invariant (it is not zoom
invariant) However we can transform very easily the equation in order to get the zoom
invariant, indeed, if we take the equation

∂C

∂t
= (β0 + β1k t) ~N, (15)

then, following the general result showed in [3], we get a similarity invariant multiscale
analysis. With this change it could be very interesting to reproduce the analysis we make
here using this ”new” reaction-diffusion scale-space, but this is beyond the scope of this
paper.
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The scale-normalized isoperimetric ratio evolution.
In order to find out similarity invariants we have to normalize the scale following the zoom

factor s. First we notice that if T
(p,β−1,β1)
t (f) is a morphological multiscale analysis invariant

under similarity transformations, S0, S ′0 bounded shapes, and H a similarity transformation
such that H(S ′0) = S0, then using proposition 3, and (9) we obtain

S(p,β−1,β1)(t̃) = H(S ′(p,β−1,β1)(st̃)) for any t ≥ 0

∣∣S(p,β−1,β1)(t̃)
∣∣ =

∣∣∣S ′(p,β−1,β1)(st̃)
∣∣∣

s2
for any t ≥ 0 and (16)

∣∣C(p,β−1,β1)(t̃)
∣∣ =

∣∣∣C ′
(p,β−1,β1)(st̃)

∣∣∣
s

for any t ≥ 0.

We will use as similarity invariant of a bounded shape S0 the scale-normalized isoperimetric
ratio evolution IS0

(p,β−1,β1)(t̃) given by the following definition

Definition 1 Let S0 be a bounded shape. We define the scale-normalized isoperimetric ratio
evolution IS0

(p,β−1,β1)(t̃) as the function

IS0
(p,β−1,β1)(t̃) = 4π

∣∣∣S(p,β−1,β1)(t̃
√
|S0|)

∣∣∣
∣∣∣C(p,β−1,β1)(t̃

√
|S0|)

∣∣∣
2 .

We notice that IS0
(p,β−1,β1)(t̃) ≤ 1, and IS0

(p,β−1,β1)(t̃) = 1 only for the case when S(p,β−1,β1)(t̃
√
|S0|)

is a circle. Next, we will show that IS0
(p,β−1,β1)(t̃) is a similarity invariant of the shape S0.

Theorem 1 Let T
(p,β−1,β1)
t (f) be a morphological multiscale analysis invariant under simi-

larity transformations, S0, S ′0 be two bounded shapes such that there exists a similarity trans-
formation H with H(S ′0) = S0, Then:

IS0
(p,β−1,β1)(t̃) = I

S′0
(p,β−1,β1)(t̃) for t̃ ≥ 0.

Proof: Let s be the zoom factor of the transformation H, using (16) we obtain:

IS0
(p,β−1,β1)(t̃) = 4π

∣∣∣S(p,β−1,β1)(t̃
√
|S0|)

∣∣∣
∣∣∣C(p,β−1,β1)(t̃

√
|S0|)

∣∣∣
2 = 4π

∣∣∣S ′(p,β−1,β1)(t̃s
√
|S0|)

∣∣∣
∣∣∣C ′

(p,β−1,β1)(t̃s
√
|S0|)

∣∣∣
2 =

= 4π

∣∣∣S ′(p,β−1,β1)(t̃
√
|S ′0|)

∣∣∣
∣∣∣C ′

(p,β−1,β1)(t̃
√
|S ′0|)

∣∣∣
2 = IS0

(p,β−1,β1)(t̃).

This concludes the proof.
Remark: We notice that in the case of the mean curvature evolution ((p, β−1, β1) =
(1,−1, 1)), if C(t) is a family of single Jordan curves, then, following the results of the
previous section we have that

∣∣∣S(1,−1,1)(t̃
√
|S0|)

∣∣∣ = |S0|
(
1− πt̃2

)
+

(17)
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where (1 − πt̃2)+ = max(1 − πt̃2, 0). This gives a close form expression for the evolution
of the area. Moreover, [15] show that S(1,−1,1)(t) converges towards a circle before vanishing
and then, IS0

(1,−1,1)(t̃) satisfies:

Lim
t̃→
�√

1
π

�−IS0
(1,−1,1)(t̃) = 1.

On the other hand, in the case p = 0 we have that

∣∣∣C(p,β−1,β1)(t̃
√
|S0|)

∣∣∣ =
(
|C0| − 2πβ1t̃

√
|S0|

)
+

this gives a close form expression for the evolution of the perimeter.
One interesting mathematical question is whether the isoperimetric ratio evolution is a

monotone function or not. The experimental results suggest that it is true in the case of
shapes defined by a single Jordan curve (that is without holes). However it seems quite
difficult to show it except in the case β1 = 0 where the result follows from relations (6)
and (5). Indeed, in this case, from (6) and (5) we can deduce that the perimeter is a non-
increasing function and the area is a non-decreasing function, then the isoperimetric ratio is
a non-decreasing function.

4 Morphological Affine Invariant Representation of a

Shape.

We consider a general affine transformation given by

H(x, y) = A


 x

y


 +


 a

b




where A is a 2× 2 matrix with |A| 6= 0.
[3] show that the only affine invariant morphological multiscale analysis is given by

β(s) =





β1s
1
3 if s ≥ 0

β−1(−s)
1
3 if s < 0,

where β1 ≥ 0 and β−1 ≤ 0. In this case we have that

H
(
Tt′(H,t)(f)

)
= Tt(H(f)),

where
t′(H, t) = |A| 43 t.

On the other hand, given two bounded shapes S0, S ′0, such that there exists an affine
transformation H with H(S ′0) = S0, we have that:

∣∣S(p,β−1,β1)(t̃)
∣∣ =

∣∣∣S ′(p,β−1,β1)(
√
|A|t̃)

∣∣∣
|A| for any t ≥ 0. (18)
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One of the main advantages of our approach is that we use a two parameters family of
affine invariant scale spaces. In our knowledge we are the first to enjoy of such possibility,
usually people take directly the classical case which correspond to β1 = −β−1. With this
two parameters family, we can get much more information about the shape geometry that
just using the classical affine invariant multiscale analysis.

In the case of the affine invariant representation, we can not use the scale-normalized
isoperimetric ratio because the perimeter is not invariant under affine transformations. We
propose a geometric invariant based just on the area evolution. However we note that we
could use any other global affine invariant of the shape.

Next, We will introduce the scale-normalized area ratio.

Definition 2 For a bounded shape S0, we define the scale-normalized area ratio evolution
ARS0

(p,β−1,β1)(t̃) as the function

ARS0
(p,β−1,β1)(t̃) =

∣∣∣S(p,β−1,β1)(t̃
√
|S0|)

∣∣∣
|S0| .

Next, we will show that ARS0
(p,β−1,β1)(t̃) is an affine invariant of the shape S0.

Theorem 2 Let T
( 1
3
,β−1,β1)

t (f) be a morphological multiscale analysis invariant under affine
transformations (p = 1

3
), S0, S ′0 be two bounded shapes such that there exists an affine

transformation H with H(S ′0) = S0, Then:

ARS0

( 1
3 ,β−1,β1)

(t̃) = AR
S′0
( 1
3 ,β−1,β1)

(t̃) for t̃ ≥ 0.

Proof: Using (18) we obtain:

ARS0

( 1
3 ,β−1,β1)

(t̃) =

∣∣∣S( 1
3 ,β−1,β1)(t̃

√
|S0|)

∣∣∣
|S0| =

∣∣∣S ′
( 1
3 ,β−1,β1)

(t̃
√
|S0| |A|)

∣∣∣
|S0| |A|

=

∣∣∣S ′
( 1
3 ,β−1,β1)

(t̃
√
|S ′0|)

∣∣∣
|S ′0|

= AR
S′0
( 1
3 ,β−1,β1)

(t̃),

this concludes the proof.

Scale normalization using the vanishing scale.

Definition 3 Given a morphological multiscale analysis T
(p,β−1,β1)
t (f) with p ≥ 0 and a shape

S0, we define the vanishing scale t̃
(p,β−1,β1)
∞ (S0) as the number:

t̃(p,β−1,β1)
∞ (S0) = sup

t̃>0

{∣∣S(t̃)
∣∣ > 0}.

Remark: Let us note by BR(x, y) the circle of radius R centered in (x, y). The evolution of
a circle under the action of a morphological multiscale analysis can be computed explicitly
and it is given by the expression

S(t̃) = B
(Rp+1−β1 t̃p+1)

1
p+1
+

(x, y)

11



(see lemma 3 in the appendix for more details), therefore if β1 > 0 the vanishing scale for a
circle of radius R is given by:

t̃(p,β−1,β1)
∞ (BR(x, y)) = β

1
p+1

1 R.

On the other hand, if β1 > 0 and S ′0 is a bounded shape, then there exists a circle BR0(x0, y0)
such that S ′0 ⊂ BR0(x0, y0), and by the inclusion principle, which means that if a shape is
included in another one, this relation is preserved by the multiscale analysis (see [4] for more
details), we have:

S ′(t̃) ⊂ B
(Rp+1

0 −β1 t̃p+1)
1

p+1
+

(x0,y0)

and therefore t̃
(p,β−1,β1)
∞ (S ′0) < β

1
p+1

1 R0.
Remark: We point out that under the action of a similarity or affine transformation, we
have that t̃

(p,β−1,β1)
∞ → st̃

(p,β−1,β1)
∞ ,where s is the zoom factor of the similarity transformation

or t̃
(p,β−1,β1)
∞ →

√
|A|t̃(p,β−1,β1)

∞ in the case of an affine transformation. This relation provides
us another way to normalize the scale in the scale-normalized isoperimetric ratio and the
scale-normalized area ratio. In other words the following functions are similarity (respect.
affine) invariant of a shape

IS0
(p,β−1,β1)(t̃) =

∣∣∣S(p,β−1,β1)(t̃(t̃
(p,β∗−1,β∗1 )
∞ ))

∣∣∣
∣∣∣C(p,β−1,β1)(t̃(t̃

(p,β∗−1,β∗1 )
∞ ))

∣∣∣
2

ARS0

( 1
3 ,β−1,β1)

(t̃) =

∣∣∣S( 1
3 ,β−1,β1)(t̃(t̃

( 1
3
,β∗−1,β∗1 )

∞ ))
∣∣∣

(
t̃
( 1
3
,β∗−1,β∗1 )

∞
)2 .

So we can compute t̃
(p,β∗−1,β∗1 )
∞ for a particular choice of (β∗1 , β

∗
−1) and then we can normalize

the scale with t̃
(p,β∗−1,β∗1 )
∞ for any other multiscale analysis (β1, β−1). For instance, we can

estimate the vanishing scale for (β−1, β1) = (−1, 1), and then, we can use this value to
normalize the scale for (β−1, β1) ∈ {(−1, 1), (0, 1), (1, 0)}

5 Numerical experiments

The numerical algorithms that we use to implement numerically the morphological multiscale
analysis are based on the techniques studied in [4]. We use a simple explicit finite difference
scheme to discretize equation (3). We have focussed our attention on the qualitative behavior
of the proposed models and we have not devoted a lot of time to study the efficiency of the
numerical algorithms. Of course, we could use more efficient algorithms to estimate the shape
evolution like the ones studied in [28] or in [9] where they propose very fast and accurate
curve evolution algorithms for equation (3). However the application of these curve evolution
type algorithms could be delicate in some cases due to, on the one hand, the boundary of a
shape could be defined by several curves (in the case the shape has holes) and on the other
hand, as we are going to see, the evolution of the shape under the action of a morphological
multiscale analysis can develop singularities in the shape evolution, that is the shape can

12



Figure 2: Test shapes used to evaluate the scale-normalized isoperimetric ratio.

be split in several shapes, two boundary curves can touch each other and become a single
curve, etc...

Next, we will present some experiments using the scale normalized isoperimetric ratio
evolution IS0

(1,β−1,β1)(t̃). We will use some synthetic shapes given in figure 2. All the shapes

(except the circle) have similar initial isoperimetric ratio (in fact theoretically the isoperi-
metric ratio is exactly the same for all shapes. However, in practice, because of pixel noise
and numerical errors, the computed isoperimetric ratio is not the same), therefore the isoperi-
metric ratio for the initial shapes, is not useful at all to classify this synthetic shape database.
However, as we are going to see, when we follow the evolution of the isoperimetric ratio
under the action of a morphological multiscale analysis we can discriminate easily between
the different shapes. The shapes are organized as follow: For each shape we have evaluated a
similarity transformation where we have rotated and changed the size of the original shape.
So shapes 1− 2, 3− 4, 4− 5, 5− 6 and 7− 8 are equivalent modulus a similarity transfor-
mation. Shape 9 is similar to shape 7 but in shape 9, we have changed the location of the
inside square. We will compare IS0

(1,β−1,β1)(t̃) for the different shapes for t̃ ∈ [0, 0.3]. We recall
that

Lim
t̃→
�√

1
π

�−IS0
(1,−1,1)(t̃) = 1.

Therefore t̃ =
√

1
π
' 0.56 is the upper bound for the scale comparison. In practice, we are

not interested in taking this upper bound as final scale because the isoperimetric ratio is
going to be close to 1 for any shape when we approach the upper bound scale and it is not
discriminant from a geometric point of view. In the experiment we present we have taken
the final scale equal to 0, 3 which seems a reasonable choice, however we have not studied
how to optimize the choice of the final scale and we have not tested different final scales.

In figure 3, we present the evolution of IS0
(1,−1,1)(t̃) for the shapes of figure 2. First, we

notice that the similarity invariant is very well preserved because the graphs of the similarity
equivalent shapes evolves very close each other. We observe that at the initial scales the
pixel noise introduced in the discrete representation of the synthetic shapes produces some
perturbations in the isoperimetric ratio estimation, however, we can realize that when we

13



Figure 3: Evolution of IS0
(1,−1,1)(t̃) for the shapes of figure 2.

move across the scales these initial perturbations disappear which is a very good behavior.
We can also realize that we can discriminate very well between the different shapes following
the isoperimetric ratio evolution. We can observe that the isoperimetric ratio of the shapes
converges to 1 as it was shown in [14] We notice that shapes 7−8−9 have similar evolutions
because the evolution of IS0

(1,−1,1)(t̃) is not altered by the location of the inside square. We
can observe that, since the curvature of the contour of the hole goes to infinity at the scale
where the hole vanishes, a singularity (a point where the evolution is not smooth) appears
at such scale. In fact, in some way, we could ”characterize” the holes of the shapes following
the singularities of the isoperimetric ratio evolution, but the studying of such behavior is
beyond the scope of this paper.

In figure 4, we present the evolution of IS0
(1,0,1)(t̃) for the shapes of figure 2. We notice

that in this case, shapes 7 and 9 have different evolution following the location of the inside
square. This behavior is illustrated in figure 5 where we show some steps of the evolution of
S(1,0,1)(t) across the scales for shape 7 and 9. We observe that shape 7 splits in 4 different
shapes when the exterior contour touches the inside square. For shape 9 we observe that
a singularity in the isoperimetric ratio evolution appears at the scale where the exterior
contour touches the inside square and the hole disappears (two boundary curves become a
single one). On the other hand, looking at the evolution of shapes 7, 8 we can observe that in
this case the isoperimetric ratio does not converge to 1 as in the case of the mean curvature
motion evolution.

In figure 6, we present the evolution of IS0
(1,−1,0)(t̃) for the shapes of figure 2. In the

appendix we will show that the asymptotic state of the shape for this multiscale analysis
is the convex-hull of the initial shape, so, in particular, the isoperimetric ratio converges
towards the isoperimetric ratio of the convex-hull of the shape.

Next, we will present some experiments for the scale normalized area ratio evolution
ARS0

( 1
3 ,β−1,β1)

(t̃). In this case, we want to discriminate shapes following general affine trans-

formations, so we will use a synthetic shape database composed by affine equivalent shapes.
This collection of synthetic shapes is presented in figure 7. For each shape we have evalu-
ated an affine transformation where we have changed the horizontal and vertical sizes in a

14



Figure 4: Evolution of IS0
(1,0,1)(t̃) for the shapes of figure 2.

Figure 5: From left to right and from top to down: Evolution of S(1,0,1)(t̃) for shapes 7 and
9 of figure 2.
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Figure 6: Evolution of IS0
(1,−1,0)(t̃) for the shapes of figure 2.

different way. So shapes 1−2, 3−4, 4−5, 5−6, 7−8 and 9−10 are equivalent modulus an
affine transformation. We will compare ARS0

( 1
3 ,β−1,β1)

(t̃) for the different shape for t̃ ∈ [0, 0.3].

In figure 8, we present the evolution of ARS0

( 1
3 ,−1,1)

(t̃) for the shapes of figure 7. Each shape

has associated two graphs which correspond to the evolution of ARS0

( 1
3 ,−1,1)

(t̃) for the different

transformations of the shape. We can observe that initially the area ratio is always equal
to 1 and it decreases across the scales. We note that the affine invariance of the multiscale
analysis is very well preserved, it means that the evolution of two affine equivalent shapes
go so close that most of the time seems to be a single graph in figure 8.

In figure 9, we present the evolution of ARS0

( 1
3 ,0,1)

(t̃) for the shapes of figure 7. We notice

that in this case, only the convex region of the shape evolves, so this behavior produces a
strong discrimination between the evolution of shapes following the geometry of their convex
and concave regions. This effect can be observed if we compare the evolution of shapes 3
and 7. The evolution of ARS0

( 1
3 ,0,1)

(t̃) for these two shapes is very different, but the evolution

of ARS0

( 1
3 ,−1,1)

(t̃) for the same shapes are much more similar. So in practice, it means that

using the information of the area evolution with different values of β−1 and β1 we obtain a
better discrimination power between different shapes.

In figure 10, we present the evolution of ARS0

( 1
3 ,−1,0)

(t̃) for the shapes of figure 7. The

evolution with the multiscale analysis T
( 1
3
,−1,0)

t is more sensitive to pixel noise than the ones
corresponding to β1 > 0. The reason is that in this case we do not have a regularization
effect on the boundary. For instance the evolution of the triangles given by shapes 5 and 6
are quite different because of some pixel errors introduced by the application of the affine
transformation to shape 5. The regularization effect on the boundary is a well-known property
of the morphological multiscale analysis, it means that the multiscale analysis smooths the
contours, by lowering the curvature value (see for instance [5], [6] for more details).
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Figure 7: Test shapes used to evaluate the affine invariant scale-normalized area ratio evolu-
tion

Figure 8: Evolution of ARS0

( 1
3 ,−1,1)

(t̃) for the shapes of figure 7.
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Figure 9: Evolution of ARS0

( 1
3 ,0,1)

(t̃) for the shapes of figure 7.

Figure 10: Evolution of ARS0

( 1
3 ,−1,0)

(t̃) for the shapes of figure 7.
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6 Application to shape classification

In this section we apply the techniques we have developed to the problem of shape classifi-
cation. We use a real shape database developed at Surrey University (see [23] and [24] for
more details). We have selected about 200 shapes in this database, in order to introduce
some real noise in the shape representation, we have printed, rotated and scanned some of
the shapes and we have added them to the database, in figure 11 we present such shape
database. We notice that in figure 11 we have normalized the size of the shapes in order to
be included in a single image, that is, the relation between the real size of the shapes could
be much more different that it appears in figure 11.

The problem we deal with is that, given a shape, we want to find the most similar
ones in the database following some distance criterium based on our shape representation.
So, first we have to define such distance criterium. In the case of the Euclidean shape
representation and given a similarity invariant multiscale analysis, we define the associated
Euclidean distance between 2 shapes S0 and S ′0 by the expression

d(p,β−1,β1)
e (S0, S

′
0) =

∫ t̃f

0

∣∣∣IS0
(p,β−1,β1)(t̃)− I

S′0
(p,β−1,β1)(t̃)

∣∣∣ dt̃, (19)

where t̃f represents the final scale we use to compute the multiscale analysis evolution. In
what follows, in the numerical experiments we present for the Euclidean invariant represen-
tation, we fit, as in the previous section, p = 1 and t̃f = 0.3

Of course, we can also combine the information of several multiscale analyses to get a
more powerful discrimination behavior. In fact, for the Euclidean shape representation, we
use

de(S0, S
′
0) = d(1,−1,1)

e (S0, S
′
0) + d(1,0,1

e (S0, S
′
0) + d(1,−1,0)

e (S0, S
′
0). (20)

We notice that with this combination we recover the histogram inversion invariance. That
is de(S0, S

′
0) is invariant under the grey-level image transformation f → −f .

In the case of the affine invariant shape representation we define an affine distance in a
similar way

d
( 1
3
,β−1,β1)

a (S0, S
′
0) =

∫ t̃f

0

∣∣∣ARS0

( 1
3 ,β−1,β1)

(t̃)− AR
S′0
( 1
3 ,β−1,β1)

(t̃)
∣∣∣ dt̃. (21)

Again, we can also combine the information of several multiscale analyses to get a more
powerful discrimination behavior and we will also use as affine invariant distance criterium :

da(S0, S
′
0) = d

( 1
3
,−1,1)

a (S0, S
′
0) + d

( 1
3
,0,1)

a (S0, S
′
0) + d

( 1
3
,−1,0)

a (S0, S
′
0). (22)

In figure 12 we present a numerical experiment where we have taken 16 shapes in the database
and we have estimated the 6 most similar ones ordered by the Euclidean distance criterium
d

(1,−1,1)
e (S0, S

′
0), the results are shown in 2 rows. We notice that for each one of these shapes

we have included a new one in the database by printing, rotating and scanning the shape,
it is produce a new ”noisy” similarity equivalent shape. In figure 12 we observe that in 14
shapes, the most similar one is the noisy version of the shape we have included. In the shapes
2 and 8 (from top to down) of the second row the distance criterium does not provided the
noisy version as the closer one. In the case of shape 8 the reason is that there are other
shapes in the database that are very similar to the original ones but in the shape 2 the
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Figure 11: Sea animal shape database taken from the Surrey University real database, where
we have included some new ones obtained by printing, rotating and scanning shapes from
the database
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Figure 12: For 16 shapes of the database, and from left to right, we present the 6 most
similar ones in the database ordered by the distance criterium d

(1,−1,1)
e (S0, S

′
0)

technique fails and it provides wrong results in the sense that some shapes which have a
geometry very different to the original have a distance lower value than the noisy version of
the shape included in the database. That’s in fact, the reason we need to combine several
multiscale analyses to get a more robust and discriminant information.

In figure 13 we present a numerical experiment where we have taken 16 shapes in the
database and we have estimated the 6 most similar ones ordered by the Euclidean distance

criterium d
(1,0,1)(S0,S′0)
e (S0, S

′
0). In this case there is a single shape (shape 8 of second row)

where the most similar one is not the noisy version included in the database. The result for
shape 2 of the second row seems to be more reasonable, from a perceptual point of view,
than in the previous experiment.

In figure 14 we present a numerical experiment where we have taken 16 shapes in the
database and we have estimated the 6 most similar ones ordered by the Euclidean distance
criterium d

(1,0,1)
e (S0, S

′
0). In this case, we obtain, in some cases, unexpected combination of

shapes like in the case of shape 4 of the first row or shape 8 in the second row. Anyway we
obtain that the noisy version included in the database is always the most similar one (except
in the shape 8 of the second row).

In figure 15 we present a numerical experiment where we have taken 16 shapes in the
database and we have estimated the 6 most similar ones ordered by the Euclidean distance
criterium de(S0, S

′
0) where we have combined 3 multiscale analyses. We notice that, in

general, the classification is pretty good from a perceptual point of view. In table 1 we
present the values of the distance criterium de(S0, S

′
0) for the numerical experiment of figure

15. We observe that for shape 8 of the second row, the only case where the method fails
in the sense that the most similar shape is not the noisy version included in the database,
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Figure 13: For 16 shapes of the database, and from left to right, we present the 6 most
similar ordered by the distance criterium d

(1,0,1)
e (S0, S

′
0)

Figure 14: For 16 shapes of the database, and from left to right, we present the 6 most
similar ordered by the distance criterium d

(1,−1,0)
e (S0, S

′
0)
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Figure 15: For 16 shapes of the database, and from left to right, we present the 6 most
similar ordered by the distance criterium de(S0, S

′
0)

the shapes are very similar and the distance values are very low. We also notice that when
there are not similar shapes in the database to the one we want to classify, there are a big
difference in the distance value between the noisy version of the shape and the most similar
one in the database, that is the case for shapes 2, 5, 6, 7, 8 in the first row.

Next, we present some experimental results concerning the affine invariant classification.
To simplify the exposition we will give directly the results obtained with the combination of
the 3 associated multiscale analyses. In figure 16 we present a numerical experiment where
we have taken 16 shapes in the database and we have estimated the 6 most similar ones
ordered by the affine distance criterium da(S0, S

′
0). First we observe that we are classifying

the shapes from an affine point of view, and a general affine transformation can modify the
geometry of a shape in a strong way. For instance, in the shape 4 of the second row, the
original shape and the third most similar one (in terms the affine distance) are, in fact, very
similar from an affine point of view (we have just to expand the vertical axis to go from
one shape to the other one). In other words, the affine classification could not be the best
one from a human perception point of view. In any case the results are pretty good, we
obtain that in 12 shapes, the method find out that the most similar one is the noisy version
included in the database, in shapes 3 of the first row and 2, 8 of the second row there are
another shapes in the database which are very similar. The method seems to fail for shape
4 of second row where the noisy version does not appear between the 6 most similar ones.
The reason, as it is shown at table 2 where we present the values of the distance criterium
da(S0, S

′
0) for this experiment, is that from the point of view of affine transformations, the

distance between this shape and the proposed ones is very low.
Remark (noise robustness) In this paper we have not focussed our attention in improving
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Table 1: We show, for the experiment in figure 15, the values of the distance function
de(S0, S

′
0)

0.0 1.1-02 5.4-02 5.7-02 7.7-02 1.1-01 0.0 9.7-03 1.0-01 1.1-01 1.6-01 1.7-01

0.0 3.3-02 2.0-01 2.0-01 2.2-01 2.3-01 0.0 2.2-02 2.7-02 8.0-02 1.0-01 1.1-01

0.0 5.2-03 3.8-02 4.8-02 8.4-02 1.1-01 0.0 1.9-02 8.0-02 1.1-01 1.2-01 1.3-01

0.0 1.4-02 2.6-02 1.1-01 1.2-01 1.2-01 0.0 2.3-02 5.4-02 8.6-02 8.7-02 8.7-02

0.0 1.3-02 1.2-01 1.2-01 1.2-01 1.5-01 0.0 2.1-02 1.4-01 1.4-01 1.8-01 1.8-01

0.0 2.1-02 2.6-01 3.0-01 3.1-01 3.2-01 0.0 1.5-02 7.0-02 7.2-02 1.1-01 1.1-01

0.0 2.3-02 1.1-01 2.4-01 3.0-01 3.4-01 0.0 2.7-02 8.9-02 2.0-01 2.5-01 2.5-01

0.0 4.0-02 2.5-01 2.7-01 2.7-01 2.9-01 0.0 1.7-02 2.7-02 2.8-02 3.8-02 7.6-02

Figure 16: From left to right, we show for 16 shapes of the database the 6 most similar ones
ordered by the distance criterium da(S0, S

′
0)
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Table 2: We show, for the experiment in figure 16, the values of the distance function
da(S0, S

′
0)

0.0 1.3-02 2.6-02 3.0-02 3.4-02 3.5-02 0.0 2.4-02 2.8-02 2.9-02 6.2-02 6.3-02

0.0 4.4-02 1.1-01 1.4-01 1.4-01 1.8-01 0.0 2.0-02 2.7-02 2.9-02 3.4-02 3.4-02

0.0 4.4-03 1.1-02 1.4-02 1.4-02 2.5-02 0.0 2.5-02 2.9-02 4.3-02 4.4-02 6.4-02

0.0 3.9-02 3.9-02 8.2-02 9.0-02 9.0-02 0.0 3.3-02 3.6-02 3.9-02 4.2-02 4.2-02

0.0 1.9-02 6.7-02 6.8-02 6.8-02 6.9-02 0.0 1.5-02 2.6-02 2.7-02 4.3-02 4.9-02

0.0 8.0-02 2.8-01 3.1-01 3.1-01 3.2-01 0.0 3.4-02 5.7-02 5.7-02 5.8-02 6.7-02

0.0 4.5-02 8.4-02 1.5-01 1.5-01 1.8-01 0.0 1.2-01 1.7-01 3.3-01 3.5-01 4.0-01

0.0 2.6-02 6.5-02 7.5e-02 8.2-02 8.3-02 0.0 1.8-02 1.9-02 2.1-02 2.3-02 2.9-02

the noise robustness of our analysis, because in fact, as we can see in the real database
experiments, our analysis is rather robust to noise even without specific strategy to improve
the noise robustness behavior, however there are rooms for some improvements in this sense
that we have not tested: First, we can observe that when β1 is equal to 0 we have not
got the nice regularization behavior of the mean curvature motion equation which removes
noise in a very efficient way, we can avoid the case β1 = 0 taking as multiscale analysis
(p, β1, β−1) = (p,−1, 1), (p,−1, ε), (p,−ε, 1) where ε > 0 would be a parameter to fit in the
applications. Notice that with this choice, we keep the invariance of the analysis under
inversion of the histogram of the image (change f by −f). Secondly, we can observe in the
experiments (see figures 3, 4, 6) that most of the noise is concentrated in the first scales
of the evolution, so one way to improve the noise-robustness behavior is to compare the
isoperimetric ratio evolution of two shapes not in the interval [0, t̃f ] but in the interval
[t̃0, t̃f ] where t̃0 > 0 should be a parameter to fit in the applications. We could also weight
the influence of the multiscale analysis in the shape comparison, for instance, the mean
curvature motion is the multiscale analysis more robust concerning the noise, so we could
assign a greater weight to this multiscale analysis in the shape comparison. Finally, we
could also estimate the initial area of the shape in a more robust way, indeed, in the case
we deal with shapes without holes where the contour is given by a single Jordan curve,
then, we know that the area evolution under the action of the mean curvature motion is
given by |S(t)| = |S0| − 2πt. So we can apply the mean curvature motion to remove noise
until a given scale t1 > 0 and then we estimate the initial area of the shape using the
formula : |S0| = |S(t1)| + 2πt1. We have not used all these kind of improvement in the
noise robustness behavior of the analysis because we do not wanted to add extra parameters
in the experiments which could disturb the interpretation of the results (If you have a lot
of parameters to manage is much more difficult to interpret the results). However, as we
have pointed out, the numerical results are pretty good even without using any strategy to
improve the noise-robustness behavior.
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7 Conclusions

In this paper, we have presented a new geometric invariant shape representation using
morphological multiscale analyses. The main idea we develop here is that if we take any
global invariant of the shape, and we follow the evolution of this invariant under the action
of a morphological multiscale analysis, then this evolution is also an invariant of the shape
and it provides a much more robust and useful information about the geometry of the shape.
In particular, the invariants we analyze in this paper are based on the area and perimeter
evolution of the shape under the action of a morphological multiscale analysis.

We have introduced a similarity invariant shape representation based on a scale-normalized
isoperimetric ratio evolution. In this case we have focused our attention in the morphological
multiscale analysis generated by the mean curvature motion evolution. In order to increase
the discrimination power of the shape representation, we propose to combine the information
of the evolution of shapes using different values of β−1 and β1. In this way we can discriminate
between the convex and concave regions of the shapes. We have presented some numerical
experiments and the results are very promising.

In the case of general affine geometric transformations the proposed geometric invariant
is based on a scale-normalized evolution of the area using the affine invariant morphological

multiscale analysis T
( 1
3
,β−1,β1)

t . We have presented some numerical experiments and the
results are also very promising.
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8 Appendix

8.1 Area and perimeter evolution.

In this section, we will show propositions 1 and 2 concerning the evolution of the perimeter
and area of a shape following the equation (3). The results that we show here are a gener-
alization of the ones presented in [16] for the Euclidean shortening flow which corresponds
to the particular choice β(s) = s. First, we will present some lemma which are a generaliza-
tion of the ones presented in [16] for the mean curvature equation which corresponds to the
particular choice β(s) = s. We will assume that the evolution of the boundary of the shape,
C(t), is a family of simple Jordan curves, and we will denote by C(t, u) = (x(t, u), y(t, v)) a
parameterization of the curve C(t), we will also use the notation

v(t, u) =

∣∣∣∣
∂C

∂u
(t, u)

∣∣∣∣ =

√(
∂x

∂u
(t, u)

)2

+

(
∂y

∂u
(t, u)

)2

we will assume (without loss of generality) that the interval of definition of u is [0, 2π].

Lemma 1
∂v

∂t
= −kβ(k)v.
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Proof : We compute

∂v2

∂t
=

∂

∂t
〈∂C

∂u
,
∂C

∂u
〉

= 2〈∂C

∂u
,

∂2C

∂t∂u
〉

= 2〈∂C

∂u
,

∂2C

∂u∂t
〉

= 2〈∂C

∂u
,

∂

∂u
(β(k) ~N)〉

= 2〈∂C

∂u
,
∂β(k)

∂u
~N − vkβ(k)~T 〉

using the Frenet equation
∂ ~N

∂u
= −vk ~T . Since

∂C

∂u
= v ~T , we have

∂v2

∂t
= 2〈v ~T ,

∂β(k)

∂u
~N − vkβ(k)~T 〉

= −2v2kβ(k)

Hence we deduce
∂v

∂t
= −vkβ(k).

Lemma 2
∂ ~N

∂t
= −∂β(k)

∂s
~T .

where s is the arclength parameterization.

Proof of lemma: First, we compute the derivative of ~T

∂ ~T

∂t
=

∂

∂t
(
1

v

∂C

∂u
)

=
∂

∂t
(
1

v
)
∂C

∂u
+

1

v

∂2C

∂t∂u

= − 1

v2

∂v

∂t

∂C

∂u
+

1

v

∂2C

∂u∂t

=
1

v2
kβ(k)v

∂C

∂u
+

1

v

∂

∂u
(β(k) ~N)

= kβ(k)~T +
1

v

∂β(k)

∂u
~N +

1

v
β(k)

∂ ~N

∂u

= kβ(k)~T +
1

v

∂β(k)

∂u
~N − 1

v
β(k)vk ~T (by Frenet eq.)

=
1

v

∂β(k)

∂u
~N

=
∂β(k)

∂s
~N.
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on the other hand, since 〈 ~N, ~N〉 = 1 and 〈~T , ~N〉 = 0 we have

〈∂
~N

∂t
, ~N〉 = 0

〈∂
~T

∂t
, ~N〉+ 〈~T ,

∂ ~N

∂t
〉 = 0

therefore using the previous estimations we conclude the proof of the lemma.
Next, we will present the mathematical proofs of the estimations (5) and (6).

Proof of Proposition 1: Since we have showed above ∂v
∂t

= −kβ(k)v, so if we integrate
this equality we obtain

∂|C(t)|
∂t

=
∂

∂t

(∫ 2π

0

vdu

)
=

∫ 2π

0

∂v

∂t
du =

= −
∫ 2π

0

−kβ(k)vdu = −
∫ |C(t)|

0

kβ(k)ds

Proof of Proposition 2: The area |S(t)| can be written as :

|S(t)| = −
∫ 2π

0

1

2
〈C, v ~N〉du

Using the previous lemma, we have:

∂|S(t)|
∂t

= −1

2

∫ 2π

0

vβ(k)− 〈C, vkβ(k) ~N〉+ 〈C, v
∂β(k)

∂s
~T 〉du

= −1

2

∫ 2π

0

vβ(k)− 〈C, vkβ(k) ~N〉 − 〈C,
∂β(k)

∂u
~T 〉du.

We integrate the last term by parts:

∂|S(t)|
∂t

= −1

2

∫ 2π

0

vβ(k)− 〈C, vkβ(k) ~N〉+ 〈∂C

∂u
, β(k)~T 〉+ 〈C, β(k)

∂ ~T

∂u
〉du

= −1

2

∫ 2π

0

vβ(k)− 〈C, vkβ(k) ~N〉+ 〈v ~T , β(k)~T 〉+ 〈C, β(k)vk ~N〉du

= −
∫ 2π

0

vβ(k)du

= −
∫ L

0

β(k)ds.

8.2 Similarity invariant geometric flows.

Next, we are going to show proposition 3 concerning the shape of the similarity invariant
multiscale analyses.
Proof of Proposition 3: Since the morphological multiscale analysis (3) are Euclidean
invariant, we can assume that the similarity transformation is given by a zoom, that is
H(x, y) = (sx, sy). A morphological multiscale analysis, satisfies the similarity invariant
principle if and only if for any solution u(t, x, y) of equation (3), the function

v(t, x, y) = u(t′(H, t), sx, sy)
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is also a solution of equation (3). On the other hand
∂v
∂t

(t, x, y) = ∂t′(H,t)
∂t

∂u
∂t

(t′(H, t), sx, sy) = ∂t′(H,t)
∂t

β(curv(u(t, sx, sy))) ‖∇u(t, sx, sy)‖
and
β(curv(v(t, x, y))) ‖∇v(t, x, y)‖ = β(s · curv(u(t, sx, sy)))s · ‖∇u(t, sx, sy)‖

Then v(t, x, y) is solution of (3) iff for any w

∂t′(H, t)

∂t
β(w) = sβ(sw) (23)

First, we consider the case w ≥ 0. We notice that if β(1) = 0 then by the above equality

β(s) = 0 for any s > 0 and the result is trivial. In the case β(1) 6= 0, since ∂t′(H,t)
∂t

can not
depends on w, then:

∂t′(H, t)

∂t
= s

β(s)

β(1)
(24)

and therefore

t′(H, t) = s
β(s)

β(1)
t. (25)

using equalities (23) and (24) we obtain that

β(s)β(w) = β(1)β(sw) for any s > 0, w ∈ R

if we take logarithms in this equality, and we compute the derivatives with respect to w, and
we evaluate it in w = 1, we obtain:

β′(1)

β(1)

1

s
=

β′(s)
β(s)

therefore, if we integrate this equality, we obtain that

β(s) = β(1)s
β′(1)
β(1) for any s > 0

then we conclude (23) taking

p =
β′(1)

β(1)

Moreover using (25) and the previous equality we obtain:

t′(H, t) = sp+1t

Now, we consider the case w < 0. In the same way, we obtain that if β(−1) = 0 the β(−s) = 0
for any s > 0 and the result is trivial, in the case β(−1) 6= 0, we obtain that

β(−s) = β(−1)s
−β′(−1)

β(−1) for any s > 0

and

t′(H, t) = s
−β′(−1)

β(−1)
+1t

Therefore if β(1)β(−1) 6= 0 since t′(H, t) does not depends on the sign of w we have that

p =
β′(1)

β(1)
=
−β′(−1)

β(−1)

which concludes the proof.
Next we show a closed-form expression for the evolution of a circle under the action of a

similarity invariant morphological multiscale analysis.
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Lemma 3 If S0 = BR0(x0, y0) is a circle of radius R0,and T
(p,β−1,β1)
t is a similarity invariant

morphological multiscale analysis, then, S(t) = BR(t)(x0, y0) where R(t) is given by

R(t) =
(
Rp+1

0 − β1(p + 1)t
) 1

p+1

+

Proof: Using the equivalence with the curve evolution, we have that the radius R(t) of the
circle satisfies the equation :

∂R

∂t
(t) = −β1

(
1

R(t)

)p

and the solution of this equation is given by

R(t) =





(
Rp+1

0 − β1(p + 1)t
) 1

p+1 if t ≤ Rp+1
0

β1(p+1)

0 if t >
Rp+1

0

β1(p+1)

which concludes the proof.

9 Viscosity solutions

The proper framework to study the multiscale operator is the theory of viscosity solution
(cf. [3]); we refer the reader to the ”user’s guide” [10] and the references inside.

Here we just want to make some remarks because the equation (3) with (8) has a possible
difficulty for Du = 0.

For |Du| 6= 0, we may write:

curv(u) = div(
Du

|Du|)

=
1

|Du|(∆u− 1

|Du|2
2∑

i=1

∂2u

∂x2
i

(
∂u

∂xi

)2)

=
1

|Du|Tr((Id− Du⊗Du

|Du|2 )D2u)

with q ⊗ q = (qiqj)i,j and Tr the trace operator.
The well-know mean curvature operator is

F (q,X) = Tr((Id− q ⊗ q

|q|2 )X).

Then the operator of (3) with (8) is

G(q, X) =





β(1)(F (q, X))p|q|1−p if F (q, X) ≥ 0,

β(−1)(−F (q, X))p|q|1−p if F (q, X) ≤ 0.

The extensions of F to (0, X) is given by (cf. user’s guide)

F (q, X) =





F (q, X) if q 6= 0,

−2||X|| if q = 0,

F̄ (q, X) =





F (q, X) if q 6= 0,

2||X|| if q = 0.
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Then the extension of G is

G(q, X) =





G(q, X) if q 6= 0,

0 if p < 1,

−2||X|| if p = 1,

−∞ if p > 1,

if q = 0,

Ḡ(q, X) =





G(q, X) if q 6= 0,

0 if p < 1,

2||X|| if p = 1,

+∞ if p > 1,

if q = 0.

Hence, for p ∈ [0, 1], the operator G has a upper and lower envelope bounded. In particular,
for p ∈ [0, 1], we have

Ḡ(0, 0) = G(0, 0). (26)

The case p > 1 need new definition of viscosity solutions ([19] for example).
The operator F is degenerate elliptic, i.e.,

F (X, q) ≥ F (Y, q) if X ≥ Y, (27)

for all q ∈ IR2, X, Y ∈ S2 where S2 is the set of symmetric matrix. Then G is degenerate
elliptic too.

Moreover the operator F is geometric, i.e.,

F (λX + µ(q ⊗ q)), λq) = λF (X, q) for all λ > 0 and µ ∈ IR. (28)

It is straightforward that the operator G satisfies the same property.
With these three properties, we have the two following results taken from [29].

Proposition 4 Assume (26), (27) and (28). If u ∈ UC(IR2) where UC denotes the space of
uniformly continuous function, is a subsolution of (3) and v is a discontinuous supersolution
of (3), and u(., 0) ≤ v(., 0) on IR2 × {0} then u(., t) ≤ v(., t) on IR2 for all t > 0.

Proposition 5 Assume (26), (27) and (28). Then, for any u0 ∈ UC(IR2),there exists a
unique solution u ∈ UC(IR2) of the equation.

Remark. We can apply the above proposition to the similarity invariant multiscale analysis
3 and we obtain that for p ≤ 1 β(1) ≥ 0 and β(−1) ≤ 0) the problem is well-posed in the
framework of the uniformly continuous functions.

Using these two results, we can, for example, obtain a solution for the evolution of a disk.
We approximate the discontinuous initial function u0 by a decreasing sequence of regular
functions un

0 in UC(IR2). Then there exists an unique solution un associated to each initial
data un

0 . Using the regularity properties of viscosity solutions, the upper star limit sup of
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the sequence of solutions, i.e., lim sup
n→+∞,y→x

un, is a subsolution of the equation. And the lower

star limit inf ( lim inf
n→+∞,y→x

un) is a supersolution. But, the functions un are continuous and the

sequence (un)n is decreasing. Then lim sup
n→+∞,y→x

un = inf
n

un and lim inf
n→+∞,y→x

un = (inf
n

un)∗ Hence

u = infn un is a solution of the problem.
Another interesting approach to the viscosity solutions for the morphological multiscale

analyses have been proposed in [18] where they use iterated contrast invariant operators to
approximate the solution.

Concave transformation

Proposition 6 Let S be a convex set. We consider the problem:




∂u

∂t
= −(−(curv(u))−)p|Du| in IR2 × IR+,

u = 11{IR2\S} on IR2 × {0},
(29)

(β(1) = 0 and β(−1) = −1 in the definition (8)) where the function 11{IR2\S} is the charac-
teristic function of the complementary set of S.

Then the stationary function u(x, t) = 11{IR2\S}(x) is a viscosity solution of (29).

Proof : First we prove the property for the sub-solution.
Let ϕ ∈ C∞(IR2 × IR+) and (x0, t0) a maximum point of u∗ − ϕ in IR2 × IR+

∗ . We may
assume that u∗(x0, t0) = ϕ(x0, t0) by adding u∗(x0, t0)− ϕ(x0, t0) to the test-function ϕ.

The function u is obviously C∞ in time variable then, by classical properties of maximum
points, we have

∂u

∂t
(x0, t0) =

∂ϕ

∂t
(x0, t0) = 0.

For the same reasons, everywhere the function u is regular at the point (x0, t0), the point
equation (29) is satisfied by the function-test ϕ. The case when Dϕ(x0, t0) = 0 need the use
of the theory of discontinuous Hamiltonian (cf. part on viscosity solutions).

It remains the case when x0 is in the boundary of S, i.e, x0 ∈ ∂S. Since the curvature
of ϕ appears in the equation, we will investigate the level set of ϕ associated to the value
ϕ(x0, t0), i.e., intersection of ϕ with the plan z = u∗(x0, t0), denoted by I. (In fact, we
consider only the connect part of I contained (x0, t0), still noted I.)

If |Dϕ(x0, t0)| = 0, then I is a point or a plan around (x0, t0) and the equation (29) is
satisfied by ϕ using the same arguments as before.

If |Dϕ(x0, t0)| 6= 0, then I is a curve. We have two cases following its regularity:

• If, at the point x0, the set S have a ”convex” corner, it is impossible to have a regular
function such that u∗ ≤ ϕ. Remark that if the set S has a ”concave” corner, it can
not be a sub-solution because we are able to construct test-function with non-positive
curvature at this corner.

• Then the boundary ∂S has a curvature at the point x0, we note it curv(S)(x0).
And, since u∗ ≤ ϕ, we get curv(S)(x0) ≤ curv(ϕ)(x0). Since the set S is convex,
curv(S)(x0) ≥ 0. Hence

∂ϕ

∂t
(x0, t0) = 0 ≤ −(−(curv(ϕ(x0, t0))−)p|Dϕ(x0, t0)|
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and it concludes the case of sub-solution.
To prove that u∗ is a super-solution, let ϕ ∈ C∞(IR2× IR+) and (x0, t0) a minimum point

of u∗ − ϕ in IR2 × IR+
∗ .

Again we obviously get

∂u

∂t
(x0, t0) =

∂ϕ

∂t
(x0, t0) = 0.

Then the super-solution condition is

∂ϕ

∂t
(x0, t0) = 0 ≥ −(−(curv(ϕ(x0, t0))−)p|Dϕ(x0, t0)|

and it is empty. ¦
Corollary 1 Let S0 be a connect and bounded shape, and the multiscale analysis given by
the equation (29). Then the asymptotic state of S0 under the action of the above multiscale
analysis is given by the convex-hull of S0, i.e., Sc

0. That is

lim
t→+∞

Tt(S0) = Sc
0.

Proof : Using the preceding proposition, we have that

Tt(S
c
0) = Sc

0 ∀t > 0.

Since (Tt(S0))t>0 is increasing family sets included in Sc
0, there exists S∞ such that

lim
t→∞

Tt(S0) =
⋃
t>0

Tt(S0) = S∞.

Wherever the set S∞ has a finite curvature, it is positive since Tt(S∞) = S∞ for any
t > 0. Where the set S∞ has a corner, it has to be a ”convex” one by a remark did in the
proof of the preceding proposition. Hence the set S∞ is convex. But, since S0 ⊂ S∞, by
definition of Sc

0, we conclude that Sc
0 = S∞. ¦

Corollary 2 If all the connect components of a shape S0 are convex and S ′0 is another shape
which have one connect component which is non-convex, then for some t ≥ 0 and for the
multiscale analysis associated to the equation (29),

|S ′(t)| 6= |S(t)|.
Proof : Using the preceding proposition, we have that Tt(S0) is constant for all scale
t ≥ 0. But Tt(S

′
0) will change because of the non-convex connect component; precisely it

will increase. ¦
Proposition 7 Let S and S ′ be two regular shapes. If the evolutions of their areas are the
same for all the multiscale analyses, i.e., |S ′(p,β−1,β1)| = |S(p,β−1,β1)| and for all scales, then
they have the same perimeter.

Proof : The assumption gives

−
∫ 2π

0

kpvdu = −
∫ 2π

0

k′pv′du for all p > 0.

We wish to let p go to 0 but it is an easy application of the Lebesgue’s Lemma since kv is
bounded by regularity of shapes. ¦
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