Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/74259
Título: Automatic extraction of blood vessels in the retinal vascular tree using multiscale medialness
Autores/as: Ben Abdallah, Mariem
Malek, Jihene
Azar, Ahmad Taher
Montesinos, Philippe
Belmabrouk, Hafedh
Esclarín Monreal, Julio
Krissian , Karl
Clasificación UNESCO: 32 Ciencias médicas
33 Ciencias tecnológicas
Palabras clave: Matched-Filter
Diabetic-Retinopathy
Image-Analysis
Fundus Images
Segmentation
Fecha de publicación: 2015
Publicación seriada: International Journal of Biomedical Imaging 
Resumen: We propose an algorithm for vessel extraction in retinal images. The first step consists of applying anisotropic diffusion filtering in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale line-tracking procedure allows detecting all vessels having similar dimensions at a chosen scale. Computing the individual image maps requires different steps. First, a number of points are preselected using the eigenvalues of the Hessian matrix. These points are expected to be near to a vessel axis. Then, for each preselected point, the response map is computed from gradient information of the image at the current scale. Finally, the multiscale image map is derived after combining the individual image maps at different scales (sizes). Two publicly available datasets have been used to test the performance of the suggested method. The main dataset is the STARE project's dataset and the second one is the DRIVE dataset. The experimental results, applied on the STARE dataset, show a maximum accuracy average of around 94.02%. Also, when performed on the DRIVE database, the maximum accuracy average reaches 91.55%.
URI: http://hdl.handle.net/10553/74259
ISSN: 1687-4188
DOI: 10.1155/2015/519024
Fuente: International Journal of Biomedical Imaging [ISSN 1687-4188], Article ID 519024, (2015)
Colección:Artículos
Vista completa
miniatura
Adobe PDF (2,97 MB)

Citas de WEB OF SCIENCETM
Citations

13
actualizado el 05-ene-2025

Visitas

117
actualizado el 04-ene-2025

Descargas

112
actualizado el 04-ene-2025

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.