Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/74040
DC FieldValueLanguage
dc.contributor.authorChalopin, Claireen_US
dc.contributor.authorKrissian, Karlen_US
dc.contributor.authorMeixensberger, Jurgenen_US
dc.contributor.authorMuns, Andreaen_US
dc.contributor.authorArlt, Felixen_US
dc.contributor.authorLindner, Dirken_US
dc.date.accessioned2020-08-07T11:29:27Z-
dc.date.available2020-08-07T11:29:27Z-
dc.date.issued2013en_US
dc.identifier.issn0013-5585en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/74040-
dc.description.abstractIn this work, we adapted a semi-automatic segmentation algorithm for vascular structures to extract cerebral blood vessels in the 3D intraoperative contrastenhanced ultrasound angiographic (3D-iUSA) data of the brain. We quantitatively evaluated the segmentation method with a physical vascular phantom. The geometrical features of the segmentation model generated by the algorithm were compared with the theoretical tube values and manual delineations provided by observers. For a silicon tube with a radius of 2 mm, the results showed that the algorithm overestimated the lumen radii values by about 1 mm, representing one voxel in the 3D-iUSA data. However, the observers were more hindered by noise and artifacts in the data, resulting in a larger overestimation of the tube lumen (twice the reference size). The first results on 3D-iUSA patient data showed that the algorithm could correctly restitute the main vascular segments with realistic geometrical features data, despite noise, artifacts and unclear blood vessel borders. A future aim of this work is to provide neurosurgeons with a visualization tool to navigate through the brain during aneurysm clipping operations.en_US
dc.languageengen_US
dc.relation.ispartofBiomedizinische Technik (Berlin. Zeitschrift)en_US
dc.sourceBiomedizinische Technik [ISSN 0013-5585], v. 58 (3), p. 293-302, (Junio 2013)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherBlood Vesselen_US
dc.subject.otherNeurosurgeryen_US
dc.subject.otherPhantomen_US
dc.subject.otherVisualizationen_US
dc.titleEvaluation of a semi-automatic segmentation algorithm in 3D intraoperative ultrasound brain angiographyen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/bmt-2012-0089en_US
dc.identifier.scopus84881495476-
dc.contributor.authorscopusid6506500642-
dc.contributor.authorscopusid6602218913-
dc.contributor.authorscopusid7006449078-
dc.contributor.authorscopusid37061568400-
dc.contributor.authorscopusid45260928700-
dc.contributor.authorscopusid7103011600-
dc.description.lastpage302en_US
dc.identifier.issue3-
dc.description.firstpage293en_US
dc.relation.volume58en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateJunio 2013en_US
dc.identifier.ulpgces
dc.description.sjr0,183
dc.description.jcr1,227
dc.description.sjrqQ4
dc.description.jcrqQ3
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

5
checked on Jun 8, 2025

WEB OF SCIENCETM
Citations

3
checked on Jun 8, 2025

Page view(s)

166
checked on Mar 15, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.