Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73852
Campo DC Valoridioma
dc.contributor.authorMarras, Mirkoen_US
dc.contributor.authorMarín-Reyes, Pedro A.en_US
dc.contributor.authorLorenzo Navarro, José Javieren_US
dc.contributor.authorCastrillón Santana, Modesto Fernandoen_US
dc.contributor.authorFenu, Giannien_US
dc.date.accessioned2020-07-28T12:26:12Z-
dc.date.available2020-07-28T12:26:12Z-
dc.date.issued2019en_US
dc.identifier.isbn978-989-758-351-3en_US
dc.identifier.issn2184-4313en_US
dc.identifier.urihttp://hdl.handle.net/10553/73852-
dc.description.abstractIntelligent technologies have pervaded our daily life, making it easier for people to complete their activities. One emerging application is involving the use of robots for assisting people in various tasks (e.g., visiting a museum). In this context, it is crucial to enable robots to correctly identify people. Existing robots often use facial information to establish the identity of a person of interest. But, the face alone may not offer enough relevant information due to variations in pose, illumination, resolution and recording distance. Other biometric modalities like the voice can improve the recognition performance in these conditions. However, the existing datasets in robotic scenarios usually do not include the audio cue and tend to suffer from one or more limitations: most of them are acquired under controlled conditions, limited in number of identities or samples per user, collected by the same recording device, and/or not freely available. In this paper, we propose AveRobot, an audio-visual dataset of 111 participants vocalizing short sentences under robot assistance scenarios. The collection took place into a three-floor building through eight different cameras with built-in microphones. The performance for face and voice re-identification and verification was evaluated on this dataset with deep learning baselines, and compared against audio-visual datasets from diverse scenarios. The results showed that AveRobot is a challenging dataset for people re-identification and verification.en_US
dc.languageengen_US
dc.relationIdentificación Automática de Oradores en Sesiones Parlamentarias Usando Características Audiovisuales.en_US
dc.relation.ispartofICPRAM (Setúbal)en_US
dc.sourceProceedings of the 8th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, p. 255-265 (2019)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherDeep learningen_US
dc.subject.otherFace-voice dataseten_US
dc.subject.otherHuman-robot interactionen_US
dc.subject.otherPeople re-identificationen_US
dc.subject.otherPeople verificationen_US
dc.titleAveroBot: an audio-visual dataset for people re-identification and verification in human-robot interactionen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference8th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2019en_US
dc.identifier.doi10.5220/0007690902550265en_US
dc.identifier.scopus2-s2.0-85064638092-
dc.identifier.scopus22333278500-
dc.identifier.scopus15042453800-
dc.contributor.orcid0000-0002-2834-2067-
dc.contributor.orcid0000-0002-8673-2725-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage265en_US
dc.description.firstpage255en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages11en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorCastrillón Santana, Modesto Fernando-
crisitem.event.eventsstartdate19-02-2019-
crisitem.event.eventsenddate21-02-2019-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMarín Reyes, Pedro Antonio-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Actas de congresos
pdf
Adobe PDF (1,81 MB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

5
actualizado el 24-nov-2024

Visitas

237
actualizado el 11-may-2024

Descargas

151
actualizado el 11-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.