Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/73796
Título: | Hyperspectral superpixel-wise glioblastoma tumor detection in histological samples | Autores/as: | Ortega Sarmiento, Samuel Fabelo Gómez, Himar Antonio Halicek, Martin Camacho Galán,Rafael Plaza Pérez, María De La Luz Marrero Callicó, Gustavo Iván Fei, Baowei |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Digital Pathology Glioblastoma (Gb) Hyperspectral Imaging Machine Learning Optics Diagnosis, et al. |
Fecha de publicación: | 2020 | Publicación seriada: | Applied Sciences (Basel) | Resumen: | The combination of hyperspectral imaging (HSI) and digital pathology may yield more accurate diagnosis. In this work, we propose the use of superpixels in HS images for combining regions of pixels that can be classified according to their spectral information to classify glioblastoma (GB) brain tumors in histologic slides. The superpixels are generated by a modified simple linear iterative clustering (SLIC) method to accommodate HS images. This work employs a dataset of H&E (Hematoxylin and Eosin) stained histology slides from 13 patients with GB and over 426,000 superpixels. Alinear support vector machine (SVM) classifier was performed on independent training, validation, and testing datasets. The results of this investigation show that the proposed method can detect GB brain tumors from non-tumor samples with average sensitivity and specificity of 87% and 81%, respectively. The overall accuracy of this method is 83%. The study demonstrates that hyperspectral digital pathology can be useful for detecting GB brain tumors by exploiting spectral information alone on a superpixel level. | URI: | http://hdl.handle.net/10553/73796 | ISSN: | 2076-3417 | DOI: | 10.3390/app10134448 | Fuente: | Applied Sciences (Basel) [EISSN 2076-3417], v. 10 (13), 4448, (Julio 2020) |
Colección: | Artículos |
Citas SCOPUSTM
15
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
10
actualizado el 17-nov-2024
Visitas
109
actualizado el 02-mar-2024
Descargas
113
actualizado el 02-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.