Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/73786
DC FieldValueLanguage
dc.contributor.authorSajjad, Muhammaden_US
dc.contributor.authorIrfan, Muhammaden_US
dc.contributor.authorMuhammad, Khanen_US
dc.contributor.authorSer, Javier Delen_US
dc.contributor.authorSánchez Medina, Javier Jesúsen_US
dc.contributor.authorAndreev, Sergeyen_US
dc.contributor.authorDing, Weipingen_US
dc.contributor.authorLee, Jong Weonen_US
dc.date.accessioned2020-07-23T20:06:43Z-
dc.date.available2020-07-23T20:06:43Z-
dc.date.issued2021en_US
dc.identifier.issn1524-9050en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73786-
dc.description.abstractAutonomous vehicles rely on sophisticated hardware and software technologies for acquiring holistic awareness of their immediate surroundings. Deep learning methods have effectively equipped modern self-driving cars with high levels of such awareness. However, their application requires high-end computational hardware, which makes utilization infeasible for the legacy vehicles that constitute most of today’s automotive industry. Hence, it becomes inherently challenging to achieve high performance while at the same time maintaining adequate computational complexity. In this paper, a monocular vision and scalar sensor-based model car is designed and implemented to accomplish autonomous driving on a specified track by employing a lightweight deep learning model. It can identify various traffic signs based on a vision sensor as well as avoid obstacles by using an ultrasonic sensor. The developed car utilizes a single Raspberry Pi as its computational unit. In addition, our work investigates the behavior of economical hardware used to deploy deep learning models. In particular, we herein propose a novel, computationally efficient, and cost-effective approach. The proposed system can serve as a platform to facilitate the development of economical technologies for autonomous vehicles that can be used as part of intelligent transportation or advanced driver assistance systems. The experimental results indicate that this model can achieve realtime response on a resource-constrained device without significant overheads, thus making it a suitable candidate for autonomous driving in current intelligent transportation systems.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Intelligent Transportation Systemsen_US
dc.sourceIEEE Transactions on Intelligent Transportation Systems [ISSN 1524-9050], v. 22 (3), p. 1718-1732, (Marzo 2021)en_US
dc.subject332703 Sistemas de transito urbanoen_US
dc.subject120326 Simulaciónen_US
dc.subject.otherAutonomous drivingen_US
dc.subject.otherRaspberry Pien_US
dc.subject.otherScalar-visual sensoren_US
dc.subject.otherIntelligent transportation systemsen_US
dc.titleAn efficient and scalable simulation model for autonomous vehicles with economical hardwareen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TITS.2020.2980855en_US
dc.identifier.scopus85102441205-
dc.contributor.authorscopusid57215455402-
dc.contributor.authorscopusid57219910074-
dc.contributor.authorscopusid56651946700-
dc.contributor.authorscopusid57216538943-
dc.contributor.authorscopusid26421466600-
dc.contributor.authorscopusid27067535800-
dc.contributor.authorscopusid57193448087-
dc.contributor.authorscopusid8948633800-
dc.identifier.eissn1558-0016-
dc.description.lastpage1732en_US
dc.identifier.issue3-
dc.description.firstpage1718en_US
dc.relation.volume22en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateMarzo 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr2,111
dc.description.jcr9,551
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,8
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

16
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

13
checked on Nov 17, 2024

Page view(s)

126
checked on May 18, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.