Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/73786
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Sajjad, Muhammad | en_US |
dc.contributor.author | Irfan, Muhammad | en_US |
dc.contributor.author | Muhammad, Khan | en_US |
dc.contributor.author | Ser, Javier Del | en_US |
dc.contributor.author | Sánchez Medina, Javier Jesús | en_US |
dc.contributor.author | Andreev, Sergey | en_US |
dc.contributor.author | Ding, Weiping | en_US |
dc.contributor.author | Lee, Jong Weon | en_US |
dc.date.accessioned | 2020-07-23T20:06:43Z | - |
dc.date.available | 2020-07-23T20:06:43Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 1524-9050 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/73786 | - |
dc.description.abstract | Autonomous vehicles rely on sophisticated hardware and software technologies for acquiring holistic awareness of their immediate surroundings. Deep learning methods have effectively equipped modern self-driving cars with high levels of such awareness. However, their application requires high-end computational hardware, which makes utilization infeasible for the legacy vehicles that constitute most of today’s automotive industry. Hence, it becomes inherently challenging to achieve high performance while at the same time maintaining adequate computational complexity. In this paper, a monocular vision and scalar sensor-based model car is designed and implemented to accomplish autonomous driving on a specified track by employing a lightweight deep learning model. It can identify various traffic signs based on a vision sensor as well as avoid obstacles by using an ultrasonic sensor. The developed car utilizes a single Raspberry Pi as its computational unit. In addition, our work investigates the behavior of economical hardware used to deploy deep learning models. In particular, we herein propose a novel, computationally efficient, and cost-effective approach. The proposed system can serve as a platform to facilitate the development of economical technologies for autonomous vehicles that can be used as part of intelligent transportation or advanced driver assistance systems. The experimental results indicate that this model can achieve realtime response on a resource-constrained device without significant overheads, thus making it a suitable candidate for autonomous driving in current intelligent transportation systems. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Transactions on Intelligent Transportation Systems | en_US |
dc.source | IEEE Transactions on Intelligent Transportation Systems [ISSN 1524-9050], v. 22 (3), p. 1718-1732, (Marzo 2021) | en_US |
dc.subject | 332703 Sistemas de transito urbano | en_US |
dc.subject | 120326 Simulación | en_US |
dc.subject.other | Autonomous driving | en_US |
dc.subject.other | Raspberry Pi | en_US |
dc.subject.other | Scalar-visual sensor | en_US |
dc.subject.other | Intelligent transportation systems | en_US |
dc.title | An efficient and scalable simulation model for autonomous vehicles with economical hardware | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TITS.2020.2980855 | en_US |
dc.identifier.scopus | 85102441205 | - |
dc.contributor.authorscopusid | 57215455402 | - |
dc.contributor.authorscopusid | 57219910074 | - |
dc.contributor.authorscopusid | 56651946700 | - |
dc.contributor.authorscopusid | 57216538943 | - |
dc.contributor.authorscopusid | 26421466600 | - |
dc.contributor.authorscopusid | 27067535800 | - |
dc.contributor.authorscopusid | 57193448087 | - |
dc.contributor.authorscopusid | 8948633800 | - |
dc.identifier.eissn | 1558-0016 | - |
dc.description.lastpage | 1732 | en_US |
dc.identifier.issue | 3 | - |
dc.description.firstpage | 1718 | en_US |
dc.relation.volume | 22 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Marzo 2021 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 2,111 | |
dc.description.jcr | 9,551 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,8 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2530-3182 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Sánchez Medina, Javier Jesús | - |
Colección: | Artículos |
Citas SCOPUSTM
16
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
13
actualizado el 17-nov-2024
Visitas
126
actualizado el 18-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.