Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73413
Campo DC Valoridioma
dc.contributor.authorOrtega Sarmiento, Samuelen_US
dc.contributor.authorHalicek, Martinen_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorGuerra Hernández, Raúl Celestinoen_US
dc.contributor.authorLópez, Carlosen_US
dc.contributor.authorLejeune, Maryleneen_US
dc.contributor.authorGodtliebsen, Freden_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.contributor.authorFei, Baoweien_US
dc.date.accessioned2020-06-22T08:29:35Z-
dc.date.available2020-06-22T08:29:35Z-
dc.date.issued2020en_US
dc.identifier.isbn9781510634077en_US
dc.identifier.issn1605-7422en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73413-
dc.description.abstract© 2020 SPIE. All rights reserved.In recent years, hyperspectral imaging (HSI) has been shown as a promising imaging modality to assist pathologists in the diagnosis of histological samples. In this work, we present the use of HSI for discriminating between normal and tumor breast cancer cells. Our customized HSI system includes a hyperspectral (HS) push-broom camera, which is attached to a standard microscope, and home-made software system for the control of image acquisition. Our HS microscopic system works in the visible and near-infrared (VNIR) spectral range (400 - 1000 nm). Using this system, 112 HS images were captured from histologic samples of human patients using 20× magnification. Cell-level annotations were made by an expert pathologist in digitized slides and were then registered with the HS images. A deep learning neural network was developed for the HS image classification, which consists of nine 2D convolutional layers. Different experiments were designed to split the data into training, validation and testing sets. In all experiments, the training and the testing set correspond to independent patients. The results show an area under the curve (AUCs) of more than 0.89 for all the experiments. The combination of HSI and deep learning techniques can provide a useful tool to aid pathologists in the automatic detection of cancer cells on digitized pathologic images.-
dc.languageengen_US
dc.publisherThe international society for optics and photonics (SPIE)en_US
dc.relationIdentificación Hiperespectral de Tumores Cerebrales (Ithaca)en_US
dc.relation.ispartofProgress in Biomedical Optics and Imaging - Proceedings of SPIEen_US
dc.sourceProceedings SPIE The International Society for Optical Engineering [EISSN 2410-90451], n. 11320: 113200Ven_US
dc.subject3314 Tecnología médica-
dc.subject.otherDeep Learning-
dc.subject.otherHistological-
dc.subject.otherHyperspectral-
dc.subject.otherMicroscopy-
dc.titleHyperspectral imaging and deep learning for the detection of breast cancer cells in digitized histological imagesen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceobjecten_US
dc.relation.conferenceMedical Imaging 2020: Digital Pathologyen_US
dc.identifier.doi10.1117/12.2548609en_US
dc.identifier.scopus85120955732-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid56285163800-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid56333613300-
dc.contributor.authorscopusid57220774025-
dc.contributor.authorscopusid57370337500-
dc.contributor.authorscopusid55974798000-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid7005499116-
dc.relation.volume11320en_US
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresosen_US
dc.description.observacionesThis research was supported in part by the U.S. National Institutes of Health (NIH) grants (R01CA156775, R01CA204254, R01HL140325, and R21CA231911) and by the Cancer Prevention and Research Institute of Texas (CPRIT) grant RP190588. This research was supported in part by the Canary Islands Government through the ACIISI (Canarian Agency for Research, Innovation and the Information Society), ITHACA project under Grant Agreement ProID2017010164 and it has been partially supported also by the Spanish Government and European Union (FEDER funds) as part of support program in the context of Distributed HW/SW Platform for Intelligent Processing of Heterogeneous Sensor Data in Large Open Areas Surveillance Applications (PLATINO) project, under contract TEC2017-86722-C4-1-R. This work was completed while Samuel Ortega was beneficiary of a pre-doctoral grant given by the “Agencia Canaria de Investigación, Innovacion y Sociedad de la Información (ACIISI)” of the “Conserjería de Economía, Industria, Comercio y Conocimiento” of the “Gobierno de Canarias”, which is part-financed by the European Social Fund (FSE) (POC 2014-2020, Eje 3 Tema Prioritario 74 (85%)).-
dc.utils.revision-
dc.date.coverdateEnero 2020en_US
dc.identifier.conferenceidevents130046-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TELen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-4303-3051-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameGuerra Hernández,Raúl Celestino-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Actas de congresos
miniatura
Adobe PDF (1,71 MB)
Vista resumida

Citas SCOPUSTM   

38
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

27
actualizado el 17-nov-2024

Visitas

197
actualizado el 09-nov-2024

Descargas

258
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.