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Abstract

In recent years, hyperspectral imaging (HSI) has been shown as a promising imaging modality to 

assist pathologists in the diagnosis of histological samples. In this work, we present the use of HSI 

for discriminating between normal and tumor breast cancer cells. Our customized HSI system 

includes a hyperspectral (HS) push-broom camera, which is attached to a standard microscope, 

and home-made software system for the control of image acquisition. Our HS microscopic system 

works in the visible and near-infrared (VNIR) spectral range (400 – 1000 nm). Using this system, 

112 HS images were captured from histologic samples of human patients using 20× magnification. 

Cell-level annotations were made by an expert pathologist in digitized slides and were then 

registered with the HS images. A deep learning neural network was developed for the HS image 

classification, which consists of nine 2D convolutional layers. Different experiments were 

designed to split the data into training, validation and testing sets. In all experiments, the training 

and the testing set correspond to independent patients. The results show an area under the curve 

(AUCs) of more than 0.89 for all the experiments. The combination of HSI and deep learning 

techniques can provide a useful tool to aid pathologists in the automatic detection of cancer cells 

on digitized pathologic images.
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1. INTRODUCTION

Traditional diagnosis of histological samples is based on the manual examination of 

morphological features of samples by skilled pathologists. In recent years, the use of 

computer-aided technologies for improving these procedures is an emerging trend to reduce 

the intra and inter-observer variability [1]. Such technologies are intended to improve the 

diagnosis, make it reproducible and quantitative, and save time in the examination of 

samples [2] [3].

Hyperspectral imaging (HSI) technology is presented as an interesting alternative to RGB 

imaging due to its capability to differentiate between different materials by exploiting both 

morphological and spectral features. The use of this technology is motivated by the fact that 

spectral information may detect subtle molecular differences between biological samples 

[4]. This technology is used together with advanced machine learning algorithms to extract 

useful information about the materials within an HS image. In this context, recent studies 

have proven the advantages of using deep learning approaches for HSI classification [5], 

which are able to exploit simultaneously both the spatial and spectral features of HSI. This 

technology has been successfully applied to aid in the diagnosis of different types of 

histological samples, such as blood samples [6], brain tumors [7], liver tumors [8], and 

melanomas [9]. In the field of breast cancer, researchers have explored the HS capabilities of 

detecting cancers [10–13] or in the differentiation between normal and mitotic cells [14–18]. 

Nevertheless, these works are characterized for being restricted to the visible spectral range, 

e.g., 400 – 750 nm, and with only a few spectral bands. Furthermore, their annotations of 

histologic slides for the subsequent classification usually lacks of details and do not have the 

information at the cellular level.

In this work, we investigate the use of HSI to differentiate between normal and tumor cells 

from breast histological samples. The images are acquired using a high spectral resolution 

system which provides 826 spectral bands from 400 nm to 1000 nm, which are beyond the 

visible limitation of a naked eye. First, cell-level annotations are performed by a skilled 

pathologist in digitized whole slides. Then, hyperspectral (HS) images from the annotated 

areas are captured. We applied an image registration method to translate the annotations 

from the whole-slide RGB image to the HS domain, thus obtaining the HS data at the 

annotated cells. Finally, we use a convolutional neural network (CNN) to automatically 

discriminate between tumor and normal breast cells.

2. METHODS

2.1 Breast cancer tissue samples

In this research work, the samples consist of pathological slides diagnosed with breast 

tumor. In this study, two different pathological slides from different patients were analyzed. 

The tissue samples were processed using a conventional histological process, including 

paraffin embedding, tissue sectioning, and staining using hematoxylin and eosin (H&E). 

Then, the whole-slides were digitized using a Pannoramic SCAN digital scanner (3D 

Histech Ltd., Budapest, Hungary). The samples were examined, and some parts of the 

digitized slides were carefully annotated by pathologists using the Pannoramic Viewer 
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software (3D Histech Ltd., Budapest, Hungary). The annotations were performed at the 

cellular level, and different types of cells were annotated: tumor cells, mitotic cells, 

lymphocytes and normal cells. Sample selection, preparation, and annotation was carried out 

in the Department of Pathology of the Hospital de Tortosa Verge de la Cinta, Spain. 

Different colors markers were used to highlight different types of cells: red for tumor cells, 

green for mitotic cells, yellow from lymphocytes, and blue for normal cells. We show an 

example of the whole digitized slide with and without annotations in Figure 1.a and b, 

respectively. In Figure 1.c, a magnified region from an annotated area of the slide is 

presented.

2.2 Hyperspectral image acquisition

The instrumentation employed in this study consists of an HS camera coupled to a 

conventional light microscope. The microscope is an Olympus BX-53 (Olympus, Tokyo, 

Japan). The HS camera is a Hyperspec VNIR A-Series from HeadWall Photonics 

(Fitchburg, MA, USA), which is based on an imaging spectrometer coupled to a CCD 

(Charge-Coupled Device) sensor, the Adimec-1000m (Adimec, Eindhoven, Netherlands). 

This HS system works in the spectral range from 400 to 1000 nm (VNIR) with a spectral 

resolution of 2.8 nm, sampling 826 spectral channels and 1004 spatial pixels. The push-

broom camera performs spatial scanning to acquire an HS cube with a mechanical stage 

(SCAN, Märzhäuser) attached to the microscope, which provides accurate movement of the 

specimens. A software system was developed to synchronize the scanning movement and 

the camera acquisition. The objective lenses are from the LMPLFLN family (Olympus, 

Tokyo, Japan), which are optimized for infra-red (IR) observations. The light source is a 12 

V - 100 W halogen lamp.

Using the aforementioned instrumentation, most of the areas annotated by the pathologist 

were captured. We used a 20* magnification for image acquisition, producing an HSI image 

size of 375 × 299 μm (1004 × 800 pixels). We imaged a total of 112 HS images, 65 from 

Patient 1 and 47 from Patient 2. Flat-field correction and reduction of the spectral bands by 

averaging contiguous spectral channels were applied to the HS images. The final goal of this 

study is to establish a relationship between the outcomes of the HSI detection and the 

diagnosis provided by the pathologists. For this reason, after capturing each HS cube, the 

consequent annotations from each area were extracted using the Pannoramic Viewer 

software. Figure 2 show an example of several HS images and their corresponding digitized 

counterparts. The annotations for each image are also shown.

2.3 Hyperspectral dataset generation

In this study, we processed HS data from different types of cells within breast cancer 

histological samples. We extracted the information from the areas that had been previously 

annotated by the pathologist. We had two different types of images: the annotated regions 

from digitized RGB slides and the corresponding HS images from the same regions. The 

size and the orientation of both types of images were different. In order to identify the 

annotated cells in the HS images, image registration between the HS images and the 

digitized slides was necessary. Our approach for the image registration consisted of 

searching for a geometric transformation that matched the information from the annotations 
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to our HS images. To this end, we performed an image registration between the digitized 

RGB slide and an RGB synthetic image extracted from the HS cube.

Our image registration includes the following steps. First, the Speeded-Up Robust Features 

(SURF) algorithm [19] is applied to both images. The output of the SURF algorithm is a set 

of relevant points of an image that can be used in subsequent image matching tasks. After 

applying SURF, feature descriptors of relevant points are extracted. Then, feature matching 

is applied to the feature descriptors retrieved from each image. This feature matching is 

based on a nearest neighbors search, using the pixel-wise distance between the different 

feature descriptors of each image. Finally, using the relevant points of both images that 

present similar features, we search for an appropriate geometric transformation. This 

computation was performed using the MATLAB Computer Vision Toolbox (MathWorks 

Inc., Natick, MA, USA).

Figure 3 shows a flowchart of the workflow for this task, where the inputs of our image 

registration approach are the digitized slide and an RGB synthetic image extracted from the 

HS cube. After obtaining the appropriate geometric transformation to map the digitized 

slides to the HS domain, we apply this geometric transformation exclusively to the 

annotations. The annotation image is calculated as the subtraction of the digitized image 

from the pathological slide and its annotated counterpart. As a result, we retrieve the 

information about the annotations in the HS domain.

After the image registration process, the annotations are geometrically aligned with the HS 

image. In order to extract the spectral information of each cell, we perform some image 

processing over the annotated image. First, as each color used for the cell annotation 

procedure contains information about a particular cell type, we separate the different colors 

(red, green, yellow, and blue) for subsequent analysis. These images consist of binary maps 

containing the contour of the annotations for each cell type. To generate a binary map where 

the whole cells are identified, we apply morphological operations to retrieve a map 

containing the location of each cell, i.e. dilation, erosion, opening and closing [20]. Finally, 

we identify each cell by computing the center of mass (centroid) of each region identified 

after performing an object search based on 8-connected components in the binary image 

[21]. Using this information, we can extract the information about the annotated cells within 

our HS data, generating HS image-patches of 39 × 39 spatial pixels and 159 spectral 

channels. This procedure is shown in Figure 4.

Table 1 shows a summary of our annotated dataset of 112 HS images. Figure 5 shows the 

average spectral signature for each patient and each cell type. In the experiments, we only 

employed normal and tumor cells to demonstrate the feasibility of the proposed method.

2.4 Convolutional Neural Network

We employed a custom 2D-CNN for the automatic differentiation between normal and 

tumor cells. The network was developed using the TensorFlow implementation of the Keras 

Deep Learning API [22–23]. This network is mainly composed by 2D convolutional layers. 

We detail the description of the network in Table 2, where the input size of each layer is 

shown in each row, and the output size is the input size of the consequent layer. All 
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convolutional and dense layer were performed with ReLU activation functions with a 10% 

dropout. The optimizer was the stochastic gradient descend method with a learning rate of 

10−4.

In this pilot study, due to the limited number of patients available for this study and due to 

the extensive work of cell labeling, we decided to train the network using the data from one 

patient, and using the data from the remaining patient for both validation (25%) and test 

(75%). A schematic of the data partition is shown in

Figure 6. We refer Experiment 1 and Experiment 2 for the situations where the data from 

Patient 1 and Patient 2 were used for training, respectively. This preliminary data partition 

was motivated by the limitation on the number of patients involved in this preliminary study. 

However, this situation is not realistic for biomedical applications. For this reason, we 

proposed two additional experiments (namely Experiment 3 and Experiment 4), where the 

models were trained and validated using the data from one patient, and the test was 

performed in an independent patient. Additionally, because of the imbalance between 

classes, we performed data augmentation for the normal cells for the training of the CNN. 

This data augmentation consisted of spatial flip and rotation of the patches corresponding to 

normal cells.

3. RESULTS

In order to measure the performance of the classifier for discriminating between normal and 

tumor cells, we use the receiver operating characteristic (ROC) curve on both the validation 

and testing datasets. To generate these results, we used different thresholds for each 

experiment. These thresholds were selected using the validation data, and then were applied 

to the final classifiers. In Table 3, we show the values for AUC, overall accuracy, sensitivity, 

and specificity extracted for both the validation and the testing datasets. Additionally, due to 

the low number of normal tissues in the testing and validation sets, we studied the variations 

of the classifier performance using bootstrapping, and we reported the 95% confidence 

intervals for such metrics.

The results of Experiments 1 and 2 are competitive in terms of AUC, reaching an average 

AUC of 0.89 and 0.90 for both validation and test. The values of accuracy, sensitivity and 

specificity are greater than 80% in all the experiments, with narrow confidence intervals. 

Furthermore, specificity and sensitivity are balanced, showing a competitive detection of 

both normal and tumor cells. The selected threshold values were 50% for Experiment 1, and 

10% for Experiment 2.

The results for Experiments 3 and 4 are shown in Table 4. The threshold values were 

selected during the validation as 25% for both Experiment 3 and Experiment 4. For these 

experiments, the validation values of all the metrics are high. This is because the data from 

the same patient was used for training and validation. Nevertheless, the results on an 

independent patient show competitive results in terms of AUC, with an average of 0.9. In the 

case of Experiment 4, the accuracy is not worsened significantly compared to Experiment 2. 

Unlike Experiment 2, however, the specificity and sensitivity values are not as balanced.
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In Figure 7, we present the ROC curves associated with the intra-patient validation 

experiments for both patients. The AUCs are similar in both cases. Additionally, the ROC 

curves suggest the classification for Patient 1 is more specialized in correctly detecting 

tumor cells (lower false positive rate), while the classification for Patient 2 is more accurate 

in detecting normal cells (higher true positive rate).

4. RGB Comparison

In order to investigate whether the classification results using HSI boost the classification 

performance of standard RGB digitized images, we perform a comparison between both 

types of images. To this end, we generated synthetic RGB images from the HS cubes by 

using a combination of wavelengths simulating the human eye response. In this way, we 

ensure a fair comparison between RGB and HSI images as they are perfectly aligned. Then, 

we generated the patches for only Experiment 3 and Experiment 4 and performed the 

classification using the same CNN described in Section 2.4. After validation, we selected the 

best performing models and summarized the results in Table 5. As it can be observed in the 

table, although the validation results showed models with competitive AUC values, where 

the specificity and sensitivity values were also high, the results on the test showed 

unbalanced results. This fact suggests a specialization of the CNN on the prediction of a 

single class, worsening the overall performance of the classifier for the other classes. This 

circumstance is more evident in Experiment 3, where the specificity is quite lower than the 

sensitivity results.

5. DISCUSSION & CONCLUSION

The use of machine learning techniques for assisting pathologists in routine examination of 

samples is an emerging trend. These computer-assisted tools are devoted to provide a 

quantitative diagnosis of different diseases, and also to decrease the current inter-observer 

variability in diagnosis. Although most of the approaches are based on conventional RGB 

image analysis, HSI is presented as a suitable technology that can boost the outcomes of 

conventional imagery due to its capability of differentiating between materials that present 

subtle molecular differences. In this work, we present the use of hyperspectral imaging and 

deep learning for automatic classification of normal and tumor cells in histological samples.

This work is novel due to the use of an annotated cell-level dataset of digitized slides, and 

the translation of such annotations to the HS domain using image registration techniques. 

After a cell-based dataset was generated, we used a 2D-CNN for the automatic 

differentiation of tumor and normal cells. The AUC for all our experiments were above 0.89, 

and the sensitivity and specificity values were approximately equivalent for Experiments 1, 2 

and 3. In the case of Experiment 4, the sensitivity and specificity values of each patient are 

not as balanced as in the other experiments. These metrics strongly depend on the threshold 

selected for the final models. Nevertheless, due to the competitive AUC, there is room for 

improvement for specificity and sensitivity if the threshold is selected using data from an 

independent patient. Two main challenges must be addressed in the future to improve the 

performance of the CNN in this application. The number of patients should be increased, 
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and more annotated cells from the normal class should be included in the dataset to balance 

the classes for the classification problem.

Finally, we compared the classification of using HSI and conventional RGB images. 

Previous study has proven the feasibility of RGB image analysis for breast cancer 

applications [24–25]. Our experiments suggest that HSI outperforms over RGB images. 

Nevertheless, further investigations should be performed to prove this observation.

One of the main challenges in computational pathology is to deal with the variations of the 

digitized slides among different laboratories. Such variations are mainly caused by the 

differences both in the instrumentation and the histological processing of samples (e.g. 

different staining conditions). In this study, we use images acquired with instrumentation 

from a single institution. However, a future goal in this field is to investigate the capabilities 

of HSI to reduce the inter-laboratory variability of data compared to conventional RGB 

imagery. Although the results of this study are promising, the study is limited by the sample 

size of the current dataset. Future work involves the inclusion of data from additional 

patients and a study of classifying other types of cells, i.e., mitotic and lymphocyte cells.

In conclusion, we developed a hyperspectral imaging microscope and deep learning software 

for digital pathology application and demonstrated the feasibility of this new imaging 

technology for breast cancer cell detection.
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Figure 1. 
Histological samples used in this study. a) Digitized whole-slide image. b) Digitized whole-

slide image including annotations. c) Details of an annotated area in the slide. Different 

types of cells were annotated: tumor cells (red) mitotic cells (green), lymphocytes (yellow), 

and normal cells (blue).
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Figure 2. 
Example HS image (a) of a histologic slide and its corresponding digitized slide (b) and 

annotations (c).
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Figure 3. 
Framework for image registration between the digitized slides and the HS images.
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Figure 4. 
Detection of cells within the spectral image.
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Figure 5. 
Mean spectral signatures from normal cells (blue), tumor cells (red), mitotic cells (green), 

and lymphocytes (black) for each patient.
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Figure 6. 
Data partition used for the classification experiments and testing.
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Figure 7. 
ROC curves from Experiment 3 and Experiment 4
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Table 1.

Number of HS image-patches in the dataset.

Class Patient 1 (65 images) Patient 2 (47 images)

Tumor cells 12505 7607

Mitotic cells 576 1082

Lymphocytes 2238 563

Normal cells 300 365
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Table 2.

Schematic of the CNN method.

Layer Kernel size Input Size

Conv2D 3×3 39×39×159

Conv2D 3×3 37×37×256

Conv2D 3×3 35×35×256

Conv2D 3×3 33×33×512

Conv2D 3×3 33×33×512

Conv2D 3×3 31×31×1024

Conv2D 3×3 29×29×1024

Conv2D 3×3 27×27×1024

Global Avg. Pool 25×25 25×25×1024

Dense 256 neurons 1×1024

Dense Logits 1×256

Softmax Classifier 1×2
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Table 3.

Results on the classification of normal and tumor cells for Experiment 1 and Experiment 2, which performs 

validation and testing on the same patient (inter-patient validation).

Group Experiment AUC Accuracy (%) Sensitivity (%) Specificity (%)

Validation

Patient 1 0.88 (0.83, 0.93) 80 (74, 85) 80 (73, 86) 80 (73, 87)

Patient 2 0.91 (0.86, 0.95) 82 (76, 88) 85 (77, 91) 80 (73, 87)

Average 0.89 (0.85, 0.94) 81 (75,87) 82 (75, 89) 80 (73,87 )

Testing

Patient 1 0.87 (0.84, 0.90) 80 (77, 83) 80 (76, 84) 80 (76, 84)

Patient 2 0.94 (0.91, 0.96) 87 (84, 90) 86 (82, 90) 89 (85, 93)

Average 0.90 (0.88, 0.93) 84 (80, 87) 83 (78, 87) 85 (81, 89)
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Table 4:

Results on the classification of normal and tumor cells for Experiment 3 and Experiment 4, which performs 

training and validation on the same patient (intra-patient validation).

Group Experiment AUC Accuracy (%) Sensitivity (%) Specificity (%)

Validation

Patient 1 0.97 (0.96, 0.98) 90 (88,91) 99 (98,100) 83 (81, 85)

Patient 2 0.94 (0.93, 0.95) 87 (85,89) 84 (82,86) 90 (88,92)

Average 0.95 (0.94, 0.96) 88 (87, 90) 92 (91, 93) 87 (85, 89)

Test

Patient 1 0.88 (0.86, 0.90) 78 (75, 81) 70 (68, 72) 97 (95, 99)

Patient 2 0.91 (0.89, 0.93) 79 (76, 82) 96 (93, 98) 71 (68, 74)

Average 0.90 (0.87, 0.92) 79 (76, 81) 83 (80, 86) 84 (82, 87)
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Table 5.

Comparison between HSI and RGB for intra-patient validation in Experiment 3 and Experiment 4.

Group Experiment Technology AUC Accuracy (%) Sensitivity (%) Specificity (%)

Validation

Patient 1
HSI 0.97 (0.96, 0.98) 90 (88, 91) 99 (98, 100) 83 (81, 85)

RGB 0.94 (0.93, 0.96) 85 (83, 86) 97 (96, 99) 77 (75, 79)

Patient 2
HSI 0.94 (0.93, 0.95) 87 (85,89) 84 (82,86) 90 (88,92)

RGB 0.88 (0.86, 0.90) 76 (74, 79) 86 (83. 89) 71 (69, 73)

Average
HSI 0.95 (0.94, 0.96) 88 (87, 90) 92 (91, 93) 87 (85, 89)

RGB 0.91 (0.89, 0.93) 80 (78, 82) 91 (89, 94) 74 (72, 76)

Test

Patient 1
HSI 0.88 (0.86, 0.90) 78 (75, 81) 70 (68, 72) 97 (95, 99)

RGB 0.94 (0.93, 0.95) 66 (64, 68) 99 (98, 100) 60 (59, 61)

Patient 2
HSI 0.91 (0.89, 0.93) 79 (76, 82) 96 (93, 98) 71 (68, 74)

RGB 0.83 (0.81, 0.86) 77 (75, 79) 70 (68, 73) 89 (86, 92)

Average
HSI 0.90 (0.87, 0.92) 79 (76, 81) 83 (80, 86) 84 (82, 87)

RGB 0.88 (0.87, 0.90) 71 (69, 73) 84 (83, 86) 74 (72, 76)
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