Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73290
Título: An attention recurrent model for human cooperation detection
Autores/as: Freire-Obregón, David 
Castrillón-Santana, Modesto 
Barra, Paola
Bisogni, Carmen
Nappi, Michele
Clasificación UNESCO: 120304 Inteligencia artificial
220990 Tratamiento digital. Imágenes
Fecha de publicación: 2020
Publicación seriada: Computer Vision And Image Understanding
Resumen: User cooperative behaviour is mandatory and valuable to warranty data acquisition quality in forensic biometrics. In the present paper, we consider human cooperative behaviour in front of wearable security cameras. Moreover, we propose a human cooperation detection pipeline based on deep learning. Recently, recurrent neural networks (RNN) have shown remarkable performance on several tasks such as image captioning, video analysis, or natural language processing. Our proposal describes an RNN architecture with the aim at detecting whether a human is exhibiting an adversarial behaviour by trying to avoid the camera. This data is obtained by analysing the noise patterns of human movement. More specifically, we are not only providing an extensive analysis on the proposed pipeline considering different configurations and a wide variety of RNN types, but also an ensemble of the generated models to outperform each single model. The experiment has been carried out using videos captured from a mobile device camera (GOTCHA Dataset) and the obtained results have demonstrated the robustness of the proposed method.
URI: http://hdl.handle.net/10553/73290
ISSN: 1077-3142
DOI: 10.1016/j.cviu.2020.102991
Fuente: Computer Vision and Image Understanding [ISSN 1077-3142], v. 197-198, (Agosto 2020)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

19
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

17
actualizado el 15-dic-2024

Visitas

120
actualizado el 22-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.