Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/73290
DC FieldValueLanguage
dc.contributor.authorFreire-Obregón, Daviden_US
dc.contributor.authorCastrillón-Santana, Modestoen_US
dc.contributor.authorBarra, Paolaen_US
dc.contributor.authorBisogni, Carmenen_US
dc.contributor.authorNappi, Micheleen_US
dc.date.accessioned2020-06-15T19:29:52Z-
dc.date.available2020-06-15T19:29:52Z-
dc.date.issued2020en_US
dc.identifier.issn1077-3142en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73290-
dc.description.abstractUser cooperative behaviour is mandatory and valuable to warranty data acquisition quality in forensic biometrics. In the present paper, we consider human cooperative behaviour in front of wearable security cameras. Moreover, we propose a human cooperation detection pipeline based on deep learning. Recently, recurrent neural networks (RNN) have shown remarkable performance on several tasks such as image captioning, video analysis, or natural language processing. Our proposal describes an RNN architecture with the aim at detecting whether a human is exhibiting an adversarial behaviour by trying to avoid the camera. This data is obtained by analysing the noise patterns of human movement. More specifically, we are not only providing an extensive analysis on the proposed pipeline considering different configurations and a wide variety of RNN types, but also an ensemble of the generated models to outperform each single model. The experiment has been carried out using videos captured from a mobile device camera (GOTCHA Dataset) and the obtained results have demonstrated the robustness of the proposed method.en_US
dc.languageengen_US
dc.relation.ispartofComputer Vision And Image Understandingen_US
dc.sourceComputer Vision and Image Understanding [ISSN 1077-3142], v. 197-198, (Agosto 2020)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.titleAn attention recurrent model for human cooperation detectionen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cviu.2020.102991en_US
dc.identifier.scopus85085946460-
dc.contributor.authorscopusid23396618800-
dc.contributor.authorscopusid57216644983-
dc.contributor.authorscopusid57205195650-
dc.contributor.authorscopusid57205194846-
dc.contributor.authorscopusid6603906020-
dc.identifier.eissn1090-235X-
dc.relation.volume197-198en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2020en_US
dc.identifier.ulpgces
dc.description.sjr0,854
dc.description.jcr3,876
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

19
checked on Dec 15, 2024

WEB OF SCIENCETM
Citations

17
checked on Dec 15, 2024

Page view(s)

120
checked on Jun 22, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.