Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73266
Campo DC Valoridioma
dc.contributor.authorCabrera Ortega, Ignacio Joséen_US
dc.contributor.authorLópez Brito, María Belénen_US
dc.contributor.authorSadarangani, Kishinen_US
dc.date.accessioned2020-06-15T09:56:04Z-
dc.date.available2020-06-15T09:56:04Z-
dc.date.issued2020en_US
dc.identifier.issn1345-4773en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73266-
dc.description.abstractIn this paper. we study sufficient conditions for the existence of solutions of a iioiiliiiear quadratic integral equation which hiss as a particular case the well-known Chaiidra.cekhar's equation which appears in the theory of radiative transfer, the kinetic theory of ga.ces, the queuing theory, traflie theory, among others. Perhaps, the originality of the mper lies in that the solutions are placed in the space of Lipschitz functions. The main tools used in the proof of the results are a sufficient condition for the relative compactness in the Holder spaces and the classical Schauder fixed point theorem.en_US
dc.languagespaen_US
dc.relation.ispartofJournal Of Nonlinear And Convex Analysisen_US
dc.sourceJournal of Nonlinear and Convex Analysis [ISSN 1345-4773], v. 21 (3), p. 551-564, (Enero 2020)en_US
dc.subject120299 Otras (especificar)en_US
dc.subject120219 Ecuaciones diferenciales ordinariasen_US
dc.subject.otherChandrasekhar's equationen_US
dc.subject.otherFixed point theoremen_US
dc.subject.otherHolder functionen_US
dc.subject.otherTeoría del punto fijoen_US
dc.titleExistence of solutions in the space of holder functions to Chandrasekhar's equationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.scopus85086024353-
dc.contributor.authorscopusid57217069709-
dc.contributor.authorscopusid57217069644-
dc.contributor.authorscopusid55964919000-
dc.identifier.eissn1880-5221-
dc.description.lastpage564en_US
dc.identifier.issue3-
dc.description.firstpage551en_US
dc.relation.volume21en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2020en_US
dc.identifier.ulpgces
dc.description.sjr0,462
dc.description.jcr1,075
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-1484-0890-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameCabrera Ortega,Ignacio José-
crisitem.author.fullNameLópez Brito, María Belén-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Colección:Artículos
Vista resumida

Visitas

113
actualizado el 19-oct-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.