Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/73218
DC FieldValueLanguage
dc.contributor.authorBermudez, Teresaen_US
dc.contributor.authorMartinon, Antonioen_US
dc.contributor.authorSadarangani, Kishinen_US
dc.date.accessioned2020-06-11T18:01:26Z-
dc.date.available2020-06-11T18:01:26Z-
dc.date.issued2014en_US
dc.identifier.issn0944-6532en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/73218-
dc.description.abstractWe define the quasi-gamma functions as the functions f :]0, infinity[->]0, infinity[ such that f(1) = 1, f(x + 1) = x f(x) for every x > 0, and f is quasi-convex. The main example of quasi-gamma function is the gamma function defined by Euler. We study some properties of the quasi-gamma functions and of the class Q of these functions.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Convex Analysisen_US
dc.sourceJournal Of Convex Analysis [ISSN 0944-6532], v. 21 (3), p. 765-783, (2014)en_US
dc.subject1202 Análisis y análisis funcionalen_US
dc.subject120210 Funciones de variables realesen_US
dc.subject.otherConvex functionsen_US
dc.subject.otherGamma functionen_US
dc.subject.otherQuasi-gamma functionen_US
dc.subject.otherQuasi-convex functionen_US
dc.titleOn quasi-gamma functionsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.isi000342730400010-
dc.description.lastpage783en_US
dc.identifier.issue3-
dc.description.firstpage765en_US
dc.relation.volume21en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid1379159-
dc.contributor.daisngid1436568-
dc.contributor.daisngid298123-
dc.description.numberofpages19en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Bermudez, T-
dc.contributor.wosstandardWOS:Martinon, A-
dc.contributor.wosstandardWOS:Sadarangani, K-
dc.date.coverdate2014en_US
dc.identifier.ulpgces
dc.description.sjr1,081
dc.description.jcr0,552
dc.description.sjrqQ2
dc.description.jcrqQ3
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Appears in Collections:Artículos
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Feb 25, 2024

Page view(s)

93
checked on Dec 14, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.