Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/73218
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bermudez, Teresa | en_US |
dc.contributor.author | Martinon, Antonio | en_US |
dc.contributor.author | Sadarangani, Kishin | en_US |
dc.date.accessioned | 2020-06-11T18:01:26Z | - |
dc.date.available | 2020-06-11T18:01:26Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.issn | 0944-6532 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/73218 | - |
dc.description.abstract | We define the quasi-gamma functions as the functions f :]0, infinity[->]0, infinity[ such that f(1) = 1, f(x + 1) = x f(x) for every x > 0, and f is quasi-convex. The main example of quasi-gamma function is the gamma function defined by Euler. We study some properties of the quasi-gamma functions and of the class Q of these functions. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Journal of Convex Analysis | en_US |
dc.source | Journal Of Convex Analysis [ISSN 0944-6532], v. 21 (3), p. 765-783, (2014) | en_US |
dc.subject | 1202 Análisis y análisis funcional | en_US |
dc.subject | 120210 Funciones de variables reales | en_US |
dc.subject.other | Convex functions | en_US |
dc.subject.other | Gamma function | en_US |
dc.subject.other | Quasi-gamma function | en_US |
dc.subject.other | Quasi-convex function | en_US |
dc.title | On quasi-gamma functions | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.isi | 000342730400010 | - |
dc.description.lastpage | 783 | en_US |
dc.identifier.issue | 3 | - |
dc.description.firstpage | 765 | en_US |
dc.relation.volume | 21 | en_US |
dc.investigacion | Ciencias | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 1379159 | - |
dc.contributor.daisngid | 1436568 | - |
dc.contributor.daisngid | 298123 | - |
dc.description.numberofpages | 19 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Bermudez, T | - |
dc.contributor.wosstandard | WOS:Martinon, A | - |
dc.contributor.wosstandard | WOS:Sadarangani, K | - |
dc.date.coverdate | 2014 | en_US |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 1,081 | |
dc.description.jcr | 0,552 | |
dc.description.sjrq | Q2 | |
dc.description.jcrq | Q3 | |
dc.description.scie | SCIE | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR Análisis funcional y ecuaciones integrales | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.orcid | 0000-0002-7090-0114 | - |
crisitem.author.parentorg | Departamento de Matemáticas | - |
crisitem.author.fullName | Sadarangani Sadarangani, Kishin Bhagwands | - |
Appears in Collections: | Artículos |
WEB OF SCIENCETM
Citations
1
checked on Feb 25, 2024
Page view(s)
93
checked on Dec 14, 2024
Google ScholarTM
Check
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.