Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73164
Campo DC Valoridioma
dc.contributor.authorSánchez-Medina, Agustín J.-
dc.contributor.authorCaballero Sánchez, Eleazar-
dc.date.accessioned2020-06-10T08:47:22Z-
dc.date.available2020-06-10T08:47:22Z-
dc.date.issued2020-
dc.identifier.issn0278-4319-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73164-
dc.description.abstractCancellations are a key aspect of hotel revenue management because of their impact on room reservation systems. In fact, very little is known about the reasons that lead customers to cancel, or how it can be avoided. The aim of this paper is to propose a means of enabling the forecasting of hotel booking cancellations using only 13 independent variables, a reduced number in comparison with related research in the area, which in addition coincide with those that are most often requested by customers when they place a reservation. For this matter, machine-learning techniques, among other artificial neural networks optimised with genetic algorithms were applied achieving a cancellation rate of up to 98%. The proposed methodology allows us not only to know about cancellation rates, but also to identify which customer is likely to cancel. This approach would mean organisations could strengthen their action protocols regarding tourist arrivals.-
dc.languageeng-
dc.relation.ispartofInternational Journal of Hospitality Management-
dc.sourceInternational Journal of Hospitality Management [ISSN 0278-4319], v. 89, (Agosto 2020)-
dc.subject120304 Inteligencia artificial-
dc.subject531290 Economía sectorial: turismo-
dc.subject.otherArtificial neural network-
dc.subject.otherCancellation forecasting-
dc.subject.otherGenetic algorithm-
dc.subject.otherHotel booking-
dc.subject.otherTree decision algorithm-
dc.titleUsing machine learning and big data for efficient forecasting of hotel booking cancellations-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhm.2020.102546-
dc.identifier.scopus85085660085-
dc.contributor.authorscopusid25638866100-
dc.contributor.authorscopusid57209777278-
dc.relation.volume89-
dc.investigacionCiencias Sociales y Jurídicas-
dc.type2Artículo-
dc.utils.revision-
dc.date.coverdateAgosto 2020-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-ECO-
dc.description.sjr2,321
dc.description.jcr9,237
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.ssciSSCI
dc.description.erihplusERIH PLUS
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Economía y Dirección de Empresas-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.orcid0000-0002-7569-3556-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Medina, Agustín Jesús-
crisitem.author.fullNameCaballero Sanchez,Eleazar-
Colección:Artículos
Unknown (417,18 kB)
Vista resumida

Citas SCOPUSTM   

59
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

47
actualizado el 15-dic-2024

Visitas

130
actualizado el 15-jun-2024

Descargas

1.571
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.