Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/73164
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sánchez-Medina, Agustín J. | - |
dc.contributor.author | Caballero Sánchez, Eleazar | - |
dc.date.accessioned | 2020-06-10T08:47:22Z | - |
dc.date.available | 2020-06-10T08:47:22Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 0278-4319 | - |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/73164 | - |
dc.description.abstract | Cancellations are a key aspect of hotel revenue management because of their impact on room reservation systems. In fact, very little is known about the reasons that lead customers to cancel, or how it can be avoided. The aim of this paper is to propose a means of enabling the forecasting of hotel booking cancellations using only 13 independent variables, a reduced number in comparison with related research in the area, which in addition coincide with those that are most often requested by customers when they place a reservation. For this matter, machine-learning techniques, among other artificial neural networks optimised with genetic algorithms were applied achieving a cancellation rate of up to 98%. The proposed methodology allows us not only to know about cancellation rates, but also to identify which customer is likely to cancel. This approach would mean organisations could strengthen their action protocols regarding tourist arrivals. | - |
dc.language | eng | - |
dc.relation.ispartof | International Journal of Hospitality Management | - |
dc.source | International Journal of Hospitality Management [ISSN 0278-4319], v. 89, (Agosto 2020) | - |
dc.subject | 120304 Inteligencia artificial | - |
dc.subject | 531290 Economía sectorial: turismo | - |
dc.subject.other | Artificial neural network | - |
dc.subject.other | Cancellation forecasting | - |
dc.subject.other | Genetic algorithm | - |
dc.subject.other | Hotel booking | - |
dc.subject.other | Tree decision algorithm | - |
dc.title | Using machine learning and big data for efficient forecasting of hotel booking cancellations | - |
dc.type | info:eu-repo/semantics/Article | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.ijhm.2020.102546 | - |
dc.identifier.scopus | 85085660085 | - |
dc.contributor.authorscopusid | 25638866100 | - |
dc.contributor.authorscopusid | 57209777278 | - |
dc.relation.volume | 89 | - |
dc.investigacion | Ciencias Sociales y Jurídicas | - |
dc.type2 | Artículo | - |
dc.utils.revision | Sí | - |
dc.date.coverdate | Agosto 2020 | - |
dc.identifier.ulpgc | Sí | - |
dc.contributor.buulpgc | BU-ECO | - |
dc.description.sjr | 2,321 | |
dc.description.jcr | 9,237 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.ssci | SSCI | |
dc.description.erihplus | ERIH PLUS | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Economía y Dirección de Empresas | - |
crisitem.author.dept | GIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.orcid | 0000-0002-7569-3556 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Sánchez Medina, Agustín Jesús | - |
crisitem.author.fullName | Caballero Sanchez,Eleazar | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.