Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/73163
Title: Neural-like network model for color images analysis systems
Authors: Benitez-Diaz, D. 
Carrabina, J.
Gonzalez-Rodriguez, M.
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
120304 Inteligencia artificial
Issue Date: 1994
Conference: 1994 IEEE International Conference on Neural Networks (ICNN 94) - 1st IEEE World Congress on Computational Intelligence 
Abstract: In this paper we present the Chromatic Neural-like Network. It is a two layer network architecture used in an image analysis system to learn objects classification tasks. Each processing unit in the hidden layer is considered as a network which codifies the color information at pixel level. The output layer makes a features analysis from the hidden layer responses in every window of the image. The architecture and operation of this network are extracted from the studies of biologic visual neural systems behavior and it is a model to be used in an artificial vision system. The learning methodology is an unsupervised, fuzzy and adaptive one and lets a faster training for image processing than other algorithms. It combines the Thresholding in Features Spaces technique and the Fuzzy Kohonen Clustering Nets approach with a gaussian membership function. Experimental results of the net performance with real images are shown.
URI: http://hdl.handle.net/10553/73163
ISBN: 0-7803-1901-X
Source: IEEE International Conference on Neural Networks - Conference Proceedings , v. 3, p. 1415-1420, (Diciembre 1994)
Appears in Collections:Actas de congresos
Show full item record

SCOPUSTM   
Citations

1
checked on Jun 13, 2021

Page view(s)

26
checked on Jun 13, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.