Please use this identifier to cite or link to this item:
Title: Major imprint of surface plankton on deep ocean prokaryotic structure and activity
Authors: Ruiz-González, Clara
Mestre, Mireia
Estrada, Marta
Sebastián Caumel, Marta 
Salazar, Guillem
Agustí, Susana
Moreno-Ostos, Enrique
Reche, Isabel
Álvarez-Salgado, Xosé Antón
Morán, Xosé Anxelu G.
Duarte, Carlos M.
Sala, M. Montserrat
Gasol, Josep M.
UNESCO Clasification: 251001 Oceanografía biológica
Keywords: Bacterial Activity
Carbon Export
Deep Ocean
Fluorescent Dissolved Organic Matter
Marine Prokaryotic Communities, et al
Issue Date: 2020
Project: Expedición de Circunnavegación Malaspina 2010: Cambio Global y Exploración Del Océano Global 
Journal: Molecular Ecology 
Abstract: Deep ocean microbial communities rely on the organic carbon produced in the sunlit ocean, yet it remains unknown whether surface processes determine the assembly and function of bathypelagic prokaryotes to a larger extent than deep-sea physicochemical conditions. Here, we explored whether variations in surface phytoplankton assemblages across Atlantic, Pacific and Indian ocean stations can explain structural changes in bathypelagic (ca. 4,000 m) free-living and particle-attached prokaryotic communities (characterized through 16S rRNA gene sequencing), as well as changes in prokaryotic activity and dissolved organic matter (DOM) quality. We show that the spatial structuring of prokaryotic communities in the bathypelagic strongly followed variations in the abundances of surface dinoflagellates and ciliates, as well as gradients in surface primary productivity, but were less influenced by bathypelagic physicochemical conditions. Amino acid-like DOM components in the bathypelagic reflected variations of those components in surface waters, and seemed to control bathypelagic prokaryotic activity. The imprint of surface conditions was more evident in bathypelagic than in shallower mesopelagic (200–1,000 m) communities, suggesting a direct connectivity through fast-sinking particles that escape mesopelagic transformations. Finally, we identified a pool of endemic deep-sea prokaryotic taxa (including potentially chemoautotrophic groups) that appear less connected to surface processes than those bathypelagic taxa with a widespread vertical distribution. Our results suggest that surface planktonic communities shape the spatial structure of the bathypelagic microbiome to a larger extent than the local physicochemical environment, likely through determining the nature of the sinking particles and the associated prokaryotes reaching bathypelagic waters.
ISSN: 0962-1083
DOI: 10.1111/mec.15454
Source: Molecular Ecology [ISSN 0962-1083], (Enero 2020)
Appears in Collections:Artículos
Show full item record


checked on Aug 1, 2021

Page view(s)

checked on Jul 17, 2021

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.