Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/72948
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Krissian , Karl | en_US |
dc.date.accessioned | 2020-06-03T19:42:46Z | - |
dc.date.available | 2020-06-03T19:42:46Z | - |
dc.date.issued | 2001 | en_US |
dc.identifier.isbn | 0-7695-1278-X | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/72948 | - |
dc.description.abstract | We propose a new variational restoration method. We express the energy as the sum of a data attachment term. A contour smoothing term and an enhancement term. The contour smoothing is achieved by minimizing the square of the derivative of the intensity in the contour direction. The enhancement is obtained by minimizing the square of the gradient norm in each estimated region, and acts like shock filters. The minimization of the energy is then done using the conjugate gradient algorithm. We present an algorithm which allows us to compute easily the gradient of the energy in the discrete case, without calculating the Euler-Lagrange equations. Experiments have been carried out on both synthetic and real images applied to 3D angiographies. | en_US |
dc.language | eng | en_US |
dc.source | Proceedings - IEEE Workshop on Variational and Level Set Methods in Computer Vision, VLSM 2001, p. 65-72, (Enero 2001) | en_US |
dc.subject | 120601 Construcción de algoritmos | en_US |
dc.subject | 220990 Tratamiento digital. Imágenes | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | 3D angiographies | en_US |
dc.subject.other | Restoration | en_US |
dc.subject.other | Segmentation | en_US |
dc.subject.other | Variational approach | en_US |
dc.title | A new variational image restoration applied to 3D angiographies | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 1st IEEE Workshop on Variational and Level Set Methods in Computer Vision | en_US |
dc.identifier.doi | 10.1109/VLSM.2001.938883 | en_US |
dc.identifier.scopus | 84966930201 | - |
dc.identifier.isi | 000170336200009 | - |
dc.contributor.authorscopusid | 6602218913 | - |
dc.description.lastpage | 72 | en_US |
dc.description.firstpage | 65 | en_US |
dc.investigacion | Ciencias | en_US |
dc.type2 | Actas de congresos | en_US |
dc.contributor.daisngid | 1202623 | - |
dc.description.numberofpages | 8 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Krissian, K | - |
dc.date.coverdate | Enero 2001 | en_US |
dc.identifier.conferenceid | events120300 | - |
dc.identifier.ulpgc | Sí | es |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 07-07-2001 | - |
crisitem.event.eventsenddate | 13-07-2001 | - |
crisitem.author.fullName | Krissian , Karl | - |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
6
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
7
checked on Nov 24, 2024
Page view(s)
85
checked on May 18, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.