Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/72873
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Garcia, Patricio | en_US |
dc.contributor.author | Suárez Araujo, Carmen Paz | en_US |
dc.contributor.author | Rodríguez, Javier | en_US |
dc.contributor.author | Rodríguez, Manuel | en_US |
dc.date.accessioned | 2020-06-01T19:11:00Z | - |
dc.date.available | 2020-06-01T19:11:00Z | - |
dc.date.issued | 1998 | en_US |
dc.identifier.issn | 0165-0270 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/72873 | - |
dc.description.abstract | The understanding of the brain structure and function and its computational style is one of the biggest challenges both in Neuroscience and Neural Computation. In order to reach this and to test the predictions of neural network modeling, it is necessary to observe the activity of neural populations. In this paper we propose a hybrid modular computational system for the spike classification of multiunits recordings. It works with no knowledge about the waveform, and it consists of two moduli: a Preprocessing (Segmentation) module, which performs the detection and centering of spike vectors using programmed computation; and a Processing (Classification) module, which implements the general approach of neural classification: feature extraction, clustering and discrimination, by means of a hybrid unsupervised multilayer artificial neural network (HUMANN). The operations of this artificial neural network on the spike vectors are: (i) compression with a Sanger Layer from 70 points vector to five principal component vector; (ii) their waveform is analyzed by a Kohonen layer; (iii) the electrical noise and overlapping spikes are rejected by a previously unreported artificial neural network named Tolerance layer; and (iv) finally the spikes are labeled into spike classes by a Labeling layer. Each layer of the system has a specific unsupervised learning rule that progressively modifies itself until the performance of the layer has been automatically optimized. The procedure showed a high sensitivity and specificity also when working with signals containing four spike types. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Journal of Neuroscience Methods | en_US |
dc.source | Journal Of Neuroscience Methods [ISSN 0165-0270], v. 82 (1), p. 59-73, (Julio 1998) | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Spike discriminator | en_US |
dc.subject.other | Neural network | en_US |
dc.subject.other | Multiple-unit recording | en_US |
dc.subject.other | Kohonen network | en_US |
dc.subject.other | Sanger network | en_US |
dc.title | Unsupervised classification of neural spikes with a hybrid multilayer artificial neural network | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/S0165-0270(98)00035-1 | en_US |
dc.identifier.scopus | 0039770760 | - |
dc.identifier.isi | 000075114300007 | - |
dc.contributor.authorscopusid | 6506952458 | - |
dc.contributor.authorscopusid | 57214464496 | - |
dc.contributor.authorscopusid | 7404695962 | - |
dc.contributor.authorscopusid | 35392589400 | - |
dc.description.lastpage | 73 | en_US |
dc.identifier.issue | 1 | - |
dc.description.firstpage | 59 | en_US |
dc.relation.volume | 82 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 2362390 | - |
dc.contributor.daisngid | 3694586 | - |
dc.contributor.daisngid | 27112896 | - |
dc.contributor.daisngid | 289289 | - |
dc.description.numberofpages | 15 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Garcia, P | - |
dc.contributor.wosstandard | WOS:Suarez, CP | - |
dc.contributor.wosstandard | WOS:Rodriguez, J | - |
dc.contributor.wosstandard | WOS:Rodriguez, M | - |
dc.date.coverdate | Julio 1998 | en_US |
dc.identifier.ulpgc | Sí | es |
dc.description.jcr | 1,43 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales. | - |
crisitem.author.dept | IU de Estudios Ambientales y Recursos Naturales | - |
crisitem.author.dept | Departamento de Química | - |
crisitem.author.orcid | 0000-0002-8826-0899 | - |
crisitem.author.orcid | 0000-0003-3604-1544 | - |
crisitem.author.orcid | 0000-0002-4382-6107 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Estudios Ambientales y Recursos Naturales | - |
crisitem.author.fullName | Suárez Araujo, Carmen Paz | - |
crisitem.author.fullName | Doña Rodríguez, José Miguel | - |
crisitem.author.fullName | Hernandez Rodriguez, María José | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
27
checked on Dec 15, 2024
WEB OF SCIENCETM
Citations
20
checked on Dec 15, 2024
Page view(s)
42
checked on Dec 2, 2023
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.