Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72793
Campo DC Valoridioma
dc.contributor.authorGarcía Báez, Patricioen_US
dc.contributor.authorAraujo, Carmen Paz Suárezen_US
dc.contributor.authorLópez, Pablo Fernándezen_US
dc.date.accessioned2020-05-27T20:41:09Z-
dc.date.available2020-05-27T20:41:09Z-
dc.date.issued2001en_US
dc.identifier.isbn978-3-540-42237-2en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/72793-
dc.description.abstractIn this paper an extension of HUMANN (hierarchical unsupervised modular adaptive neural network) is presented together with a parametric study of this network in dealing with noise and with classes of any shape and size. The study has been made based on the two most noise dependent HUMANN parameters, λ and μ, using synthesised databases (bidimensional patterns with outliers and classes with different probability density distribution). In order to evaluate the robustness of HUMANN a Monte Carlo [1] analysis was carried out using the creation of separate data in given classes. The influence of the different parameters in the recovery of these classes was then studied.en_US
dc.languageengen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 2085 LNCS (PART 2), p. 96-103, (Enero 2001)en_US
dc.subject120304 Inteligencia artificialen_US
dc.titleExtension of HUMANN for dealing with noise and with classes of different shape and size: a parametric studyen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001en_US
dc.identifier.doi10.1007/3-540-45723-2_11en_US
dc.identifier.scopus84902182423-
dc.contributor.authorscopusid23476362100-
dc.contributor.authorscopusid23476354000-
dc.contributor.authorscopusid57208877975-
dc.identifier.eissn1611-3349-
dc.description.lastpage103en_US
dc.identifier.issuePART 2-
dc.description.firstpage96en_US
dc.relation.volume2085en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-3-540-45723-7-
dc.utils.revisionen_US
dc.date.coverdateEnero 2001en_US
dc.identifier.conferenceidevents121520-
dc.identifier.ulpgces
dc.description.jcr0,415
dc.description.jcrqQ3
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-9973-5319-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.orcid0000-0002-2135-6095-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameGarcía Baez, Patricio-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
crisitem.author.fullNameFernández López, Pablo Carmelo-
crisitem.event.eventsstartdate13-06-2001-
crisitem.event.eventsenddate15-06-2001-
Colección:Actas de congresos
Vista resumida

Visitas

101
actualizado el 23-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.