Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72793
Título: Extension of HUMANN for dealing with noise and with classes of different shape and size: a parametric study
Autores/as: García Báez, Patricio 
Araujo, Carmen Paz Suárez 
López, Pablo Fernández 
Clasificación UNESCO: 120304 Inteligencia artificial
Fecha de publicación: 2001
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001 
Resumen: In this paper an extension of HUMANN (hierarchical unsupervised modular adaptive neural network) is presented together with a parametric study of this network in dealing with noise and with classes of any shape and size. The study has been made based on the two most noise dependent HUMANN parameters, λ and μ, using synthesised databases (bidimensional patterns with outliers and classes with different probability density distribution). In order to evaluate the robustness of HUMANN a Monte Carlo [1] analysis was carried out using the creation of separate data in given classes. The influence of the different parameters in the recovery of these classes was then studied.
URI: http://hdl.handle.net/10553/72793
ISBN: 978-3-540-42237-2
ISSN: 0302-9743
DOI: 10.1007/3-540-45723-2_11
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 2085 LNCS (PART 2), p. 96-103, (Enero 2001)
Colección:Actas de congresos
Vista completa

Visitas

101
actualizado el 23-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.