Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/72766
Title: | Enzymatic degradation study of PLA-based composite scaffolds | Authors: | Donate, Ricardo Monzón, Mario Alemán-Domínguez, María Elena Ortega, Zaida |
UNESCO Clasification: | 3312 Tecnología de materiales 3313 Tecnología e ingeniería mecánicas 3314 Tecnología médica |
Keywords: | Polylactic acid PLA bone tissue engineering Bone tissue engineering Proteinase K |
Issue Date: | 2020 | Project: | Mejora de la Biofuncionalidad de Scaffolds Polimericos Obtenidos Por Fabricacion Aditiva | Journal: | Reviews on Advanced Materials Science | Abstract: | Disadvantages in the use of polylactic acid (PLA) as a base material for Tissue Engineering applications include the low osteoconductivity of this biomaterial, its acidic degradation and the deficient cellular adhesion on its surface. In order to counteract these drawbacks, calcium carbonate (CaCO3) and β-tricalcium phosphate (Ca3(PO4)2, β-TCP) were proposed in this work as additives of PLA-based support structures. Composite scaffolds (PLA:CaCO3:β-TCP 95:2.5:2.5) manufactured by fused deposition modeling (FDM) were tested under enzymatic degradation using proteinase K enzymes to assess the modification of their properties in comparison with neat PLA scaffolds. The samples were characterized before and after the degradation test by optical microscopy, scanning electron microscopy, compression testing and thermogravimetric and calorimetric analysis. According to the results, the combination of the PLA matrix with the proposed additives increases the degradation rate of the 3D printed scaffolds, which is an advantage for the application of the composite scaffold in the field of Tissue Engineering. The higher degradation rate of the composite scaffolds could be explained by the release of the additive particles and the statistically higher microporosity of these samples compared to the neat PLA ones. | URI: | http://hdl.handle.net/10553/72766 | ISSN: | 1605-8127 | DOI: | 10.1515/rams-2020-0005 | Source: | Reviews on Advanced Materials Science [ISSN 1605-8127], v.59 (1), p. 170-175 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
31
checked on Nov 3, 2024
WEB OF SCIENCETM
Citations
31
checked on Nov 3, 2024
Page view(s)
129
checked on Jan 27, 2024
Download(s)
95
checked on Jan 27, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.