Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72725
Campo DC Valoridioma
dc.contributor.authorSalazar, Danielen_US
dc.contributor.authorRocco, Claudio M.en_US
dc.contributor.authorGalván González, Blas Joséen_US
dc.date.accessioned2020-05-21T20:40:46Z-
dc.date.available2020-05-21T20:40:46Z-
dc.date.issued2006en_US
dc.identifier.issn0951-8320en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/72725-
dc.description.abstractThis paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.en_US
dc.languageengen_US
dc.relation.ispartofReliability Engineering and System Safetyen_US
dc.sourceReliability Engineering & System Safety [ISSN 0951-8320], v. 91 (9), p. 1057-1070, (Septiembre 2006)en_US
dc.subject1207 Investigación operativaen_US
dc.subject.otherDesignen_US
dc.subject.otherConstrained optimizationen_US
dc.subject.otherMoeaen_US
dc.subject.otherMultiple-objective optimizationen_US
dc.subject.otherRedundancy allocation and reliability optimizationen_US
dc.titleOptimization of constrained multiple-objective reliability problems using evolutionary algorithmsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ress.2005.11.040en_US
dc.identifier.isi000239648900008-
dc.description.lastpage1070en_US
dc.identifier.issue9-
dc.description.firstpage1057en_US
dc.relation.volume91en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid1400577-
dc.contributor.daisngid771425-
dc.contributor.daisngid1678121-
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Salazar, D-
dc.contributor.wosstandardWOS:Rocco, CM-
dc.contributor.wosstandardWOS:Galvan, BJ-
dc.date.coverdateSeptiembre 2006en_US
dc.identifier.ulpgces
dc.description.jcr0,92
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameGalvan Gonzalez,Blas Jose-
Colección:Artículos
Vista resumida

Visitas

87
actualizado el 23-sep-2024

Descargas

43
actualizado el 23-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.