Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72725
DC FieldValueLanguage
dc.contributor.authorSalazar, Danielen_US
dc.contributor.authorRocco, Claudio M.en_US
dc.contributor.authorGalván González, Blas Joséen_US
dc.date.accessioned2020-05-21T20:40:46Z-
dc.date.available2020-05-21T20:40:46Z-
dc.date.issued2006en_US
dc.identifier.issn0951-8320en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/72725-
dc.description.abstractThis paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.en_US
dc.languageengen_US
dc.relation.ispartofReliability Engineering and System Safetyen_US
dc.sourceReliability Engineering & System Safety [ISSN 0951-8320], v. 91 (9), p. 1057-1070, (Septiembre 2006)en_US
dc.subject1207 Investigación operativaen_US
dc.subject.otherDesignen_US
dc.subject.otherConstrained optimizationen_US
dc.subject.otherMoeaen_US
dc.subject.otherMultiple-objective optimizationen_US
dc.subject.otherRedundancy allocation and reliability optimizationen_US
dc.titleOptimization of constrained multiple-objective reliability problems using evolutionary algorithmsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ress.2005.11.040en_US
dc.identifier.isi000239648900008-
dc.description.lastpage1070en_US
dc.identifier.issue9-
dc.description.firstpage1057en_US
dc.relation.volume91en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid1400577-
dc.contributor.daisngid771425-
dc.contributor.daisngid1678121-
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Salazar, D-
dc.contributor.wosstandardWOS:Rocco, CM-
dc.contributor.wosstandardWOS:Galvan, BJ-
dc.date.coverdateSeptiembre 2006en_US
dc.identifier.ulpgces
dc.description.jcr0,92
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameGalvan Gonzalez,Blas Jose-
Appears in Collections:Artículos
Show simple item record

Page view(s)

37
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.