Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72718
Título: Use of multiple objective evolutionary algorithms in optimizing surveillance requirements
Autores/as: Martorell, S.
Carlos, S.
Villanueva, J. F.
Sanchez, A. I.
Galvan, B. 
Salazar, D.
Cepin, M.
Clasificación UNESCO: 1207 Investigación operativa
Palabras clave: Genetic algorithms
Multiobjective optimization
Technical specifications
Maintenance
Safety
Fecha de publicación: 2006
Publicación seriada: Reliability Engineering and System Safety 
Resumen: This paper presents the development and application of a double-loop Multiple Objective Evolutionary Algorithm that uses a Multiple Objective Genetic Algorithm to perform the simultaneous optimization of periodic Test Intervals (TI) and Test Planning (TP). It takes into account the time-dependent effect of TP performed on stand-by safety-related equipment. TI and TP are part of the Surveillance Requirements within Technical Specifications at Nuclear Power Plants. It addresses the problem of multi-objective optimization in the space of dependable variables, i.e. TI and TP, using a novel flexible structure of the optimization algorithm. Lessons learnt from the cases of application of the methodology to optimize TI and TP for the High-Pressure Injection System are given. The results show that the double-loop Multiple Objective Evolutionary Algorithm is able to find the Pareto set of solutions that represents a. surface of non-dominated solutions that satisfy all the constraints imposed on the objective functions and decision variables. Decision makers can adopt then the best solution found depending on their particular preference, e.g. minimum cost, minimum unavailability.
URI: http://hdl.handle.net/10553/72718
ISSN: 0951-8320
DOI: 10.1016/j.ress.2005.11.038
Fuente: Reliability Engineering & System Safety [ISSN 0951-8320], v. 91 (9), p. 1027-1038, (Septiembre 2006)
Colección:Artículos
Vista completa

Citas de WEB OF SCIENCETM
Citations

33
actualizado el 17-nov-2024

Visitas

65
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.