Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72718
DC FieldValueLanguage
dc.contributor.authorMartorell, S.en_US
dc.contributor.authorCarlos, S.en_US
dc.contributor.authorVillanueva, J. F.en_US
dc.contributor.authorSanchez, A. I.en_US
dc.contributor.authorGalvan, B.en_US
dc.contributor.authorSalazar, D.en_US
dc.contributor.authorCepin, M.en_US
dc.date.accessioned2020-05-21T16:35:11Z-
dc.date.available2020-05-21T16:35:11Z-
dc.date.issued2006en_US
dc.identifier.issn0951-8320en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/72718-
dc.description.abstractThis paper presents the development and application of a double-loop Multiple Objective Evolutionary Algorithm that uses a Multiple Objective Genetic Algorithm to perform the simultaneous optimization of periodic Test Intervals (TI) and Test Planning (TP). It takes into account the time-dependent effect of TP performed on stand-by safety-related equipment. TI and TP are part of the Surveillance Requirements within Technical Specifications at Nuclear Power Plants. It addresses the problem of multi-objective optimization in the space of dependable variables, i.e. TI and TP, using a novel flexible structure of the optimization algorithm. Lessons learnt from the cases of application of the methodology to optimize TI and TP for the High-Pressure Injection System are given. The results show that the double-loop Multiple Objective Evolutionary Algorithm is able to find the Pareto set of solutions that represents a. surface of non-dominated solutions that satisfy all the constraints imposed on the objective functions and decision variables. Decision makers can adopt then the best solution found depending on their particular preference, e.g. minimum cost, minimum unavailability.en_US
dc.languageengen_US
dc.relation.ispartofReliability Engineering and System Safetyen_US
dc.sourceReliability Engineering & System Safety [ISSN 0951-8320], v. 91 (9), p. 1027-1038, (Septiembre 2006)en_US
dc.subject1207 Investigación operativaen_US
dc.subject.otherGenetic algorithmsen_US
dc.subject.otherMultiobjective optimizationen_US
dc.subject.otherTechnical specificationsen_US
dc.subject.otherMaintenanceen_US
dc.subject.otherSafetyen_US
dc.titleUse of multiple objective evolutionary algorithms in optimizing surveillance requirementsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ress.2005.11.038en_US
dc.identifier.isi000239648900005-
dc.identifier.eissn1879-0836-
dc.description.lastpage1038en_US
dc.identifier.issue9-
dc.description.firstpage1027en_US
dc.relation.volume91en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid30077507-
dc.contributor.daisngid910185-
dc.contributor.daisngid1574393-
dc.contributor.daisngid1854684-
dc.contributor.daisngid1678121-
dc.contributor.daisngid1400577-
dc.contributor.daisngid429597-
dc.description.numberofpages12en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Martorell, S-
dc.contributor.wosstandardWOS:Carlos, S-
dc.contributor.wosstandardWOS:Villanueva, JF-
dc.contributor.wosstandardWOS:Sanchez, AI-
dc.contributor.wosstandardWOS:Galvan, B-
dc.contributor.wosstandardWOS:Salazar, D-
dc.contributor.wosstandardWOS:Cepin, M-
dc.date.coverdateSeptiembre 2006en_US
dc.identifier.ulpgces
dc.description.jcr0,92
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameGalvan Gonzalez,Blas Jose-
Appears in Collections:Artículos
Show simple item record

WEB OF SCIENCETM
Citations

33
checked on Nov 17, 2024

Page view(s)

65
checked on Aug 24, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.